File size: 5,079 Bytes
a5ae8e0
 
 
 
 
fd1f1e6
a5ae8e0
 
 
fd1f1e6
 
 
 
 
a5ae8e0
 
 
 
 
 
 
 
 
 
fd1f1e6
a5ae8e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
library_name: transformers
license: other
base_model: trl-lib/qwen1.5-0.5b-sft
tags:
- alignment-handbook
- trl
- simpo
- generated_from_trainer
- trl
- simpo
- generated_from_trainer
datasets:
- yakazimir/ultrafeedback_binarized
model-index:
- name: qwen_orpo_entropy
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# qwen_orpo_entropy

This model is a fine-tuned version of [trl-lib/qwen1.5-0.5b-sft](https://huggingface.co/trl-lib/qwen1.5-0.5b-sft) on the yakazimir/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5245
- Rewards/chosen: -9.9757
- Rewards/rejected: -11.1054
- Rewards/accuracies: 0.7240
- Rewards/margins: 1.1296
- Logps/rejected: -11.1054
- Logps/chosen: -9.9757
- Logits/rejected: 0.9577
- Logits/chosen: 0.9163
- Semantic Entropy: 0.0013

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Semantic Entropy |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:----------------:|
| 1.0119        | 0.2141 | 400  | 1.0132          | -1.7930        | -2.0280          | 0.5660             | 0.2350          | -2.0280        | -1.7930      | 0.3600          | 0.2738        | 0.6132           |
| 0.5924        | 0.4282 | 800  | 0.5851          | -6.7409        | -7.2987          | 0.6810             | 0.5578          | -7.2987        | -6.7409      | 0.5386          | 0.4884        | 0.0131           |
| 0.5951        | 0.6422 | 1200 | 0.5522          | -7.9883        | -8.6813          | 0.7062             | 0.6931          | -8.6813        | -7.9883      | 0.7969          | 0.7507        | 0.0050           |
| 0.4796        | 0.8563 | 1600 | 0.5406          | -8.4790        | -9.1974          | 0.7047             | 0.7184          | -9.1974        | -8.4790      | 0.9158          | 0.8517        | 0.0035           |
| 0.5834        | 1.0704 | 2000 | 0.5344          | -8.7256        | -9.5131          | 0.7159             | 0.7875          | -9.5131        | -8.7256      | 0.8620          | 0.7784        | 0.0027           |
| 0.5261        | 1.2845 | 2400 | 0.5313          | -8.7103        | -9.6511          | 0.7136             | 0.9408          | -9.6511        | -8.7103      | 0.8723          | 0.8012        | 0.0029           |
| 0.4879        | 1.4986 | 2800 | 0.5264          | -8.6267        | -9.5330          | 0.7218             | 0.9063          | -9.5330        | -8.6267      | 0.7496          | 0.6896        | 0.0033           |
| 0.5524        | 1.7127 | 3200 | 0.5207          | -8.8757        | -9.8346          | 0.7166             | 0.9589          | -9.8346        | -8.8757      | 0.9052          | 0.8485        | 0.0030           |
| 0.5311        | 1.9267 | 3600 | 0.5170          | -9.0983        | -10.0747         | 0.7233             | 0.9765          | -10.0747       | -9.0983      | 0.8342          | 0.7884        | 0.0024           |
| 0.3953        | 2.1408 | 4000 | 0.5261          | -9.8407        | -10.9409         | 0.7196             | 1.1002          | -10.9409       | -9.8407      | 0.9782          | 0.9286        | 0.0015           |
| 0.428         | 2.3549 | 4400 | 0.5250          | -9.9515        | -11.0890         | 0.7211             | 1.1375          | -11.0890       | -9.9515      | 0.9721          | 0.9215        | 0.0013           |
| 0.4394        | 2.5690 | 4800 | 0.5238          | -9.8173        | -10.9421         | 0.7255             | 1.1248          | -10.9421       | -9.8173      | 0.8956          | 0.8550        | 0.0014           |
| 0.4221        | 2.7831 | 5200 | 0.5239          | -9.9581        | -11.0861         | 0.7248             | 1.1280          | -11.0861       | -9.9581      | 0.9048          | 0.8672        | 0.0013           |
| 0.4023        | 2.9972 | 5600 | 0.5245          | -9.9757        | -11.1054         | 0.7240             | 1.1296          | -11.1054       | -9.9757      | 0.9577          | 0.9163        | 0.0013           |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1