qwen_ce_entropy / README.md
yakazimir's picture
End of training
fd365ca verified
metadata
library_name: transformers
license: other
base_model: trl-lib/qwen1.5-0.5b-sft
tags:
  - alignment-handbook
  - trl
  - simpo
  - generated_from_trainer
  - trl
  - simpo
  - generated_from_trainer
datasets:
  - yakazimir/ultrafeedback_binarized
model-index:
  - name: qwen_ce_entropy
    results: []

qwen_ce_entropy

This model is a fine-tuned version of trl-lib/qwen1.5-0.5b-sft on the yakazimir/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2625
  • Rewards/chosen: -1.2622
  • Rewards/rejected: -1.3864
  • Rewards/accuracies: 0.5475
  • Rewards/margins: 0.1242
  • Logps/rejected: -1.3864
  • Logps/chosen: -1.2622
  • Logits/rejected: 0.1431
  • Logits/chosen: 0.0760

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
1.2903 0.2141 400 1.3234 -1.3231 -1.4418 0.5556 0.1187 -1.4418 -1.3231 0.3478 0.2657
1.2586 0.4282 800 1.2926 -1.2924 -1.4167 0.5482 0.1243 -1.4167 -1.2924 0.3140 0.2391
1.217 0.6422 1200 1.2836 -1.2833 -1.4047 0.5475 0.1213 -1.4047 -1.2833 0.2906 0.2178
1.299 0.8563 1600 1.2774 -1.2772 -1.3985 0.5467 0.1213 -1.3985 -1.2772 0.2371 0.1683
1.2617 1.0704 2000 1.2726 -1.2724 -1.3958 0.5482 0.1234 -1.3958 -1.2724 0.1842 0.1180
1.1894 1.2845 2400 1.2689 -1.2687 -1.3924 0.5460 0.1238 -1.3924 -1.2687 0.1212 0.0586
1.2779 1.4986 2800 1.2662 -1.2659 -1.3880 0.5453 0.1221 -1.3880 -1.2659 0.1199 0.0573
1.225 1.7127 3200 1.2650 -1.2647 -1.3872 0.5490 0.1225 -1.3872 -1.2647 0.1854 0.1171
1.1621 1.9267 3600 1.2636 -1.2634 -1.3853 0.5475 0.1219 -1.3853 -1.2634 0.1551 0.0880
1.1565 2.1408 4000 1.2633 -1.2631 -1.3880 0.5482 0.1250 -1.3880 -1.2631 0.0952 0.0325
1.1515 2.3549 4400 1.2629 -1.2626 -1.3868 0.5467 0.1242 -1.3868 -1.2626 0.0880 0.0251
1.1364 2.5690 4800 1.2625 -1.2623 -1.3865 0.5467 0.1242 -1.3865 -1.2623 0.1292 0.0630
1.1256 2.7831 5200 1.2626 -1.2623 -1.3864 0.5475 0.1241 -1.3864 -1.2623 0.1208 0.0553
1.1655 2.9972 5600 1.2625 -1.2622 -1.3864 0.5475 0.1242 -1.3864 -1.2622 0.1431 0.0760

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1