--- library_name: transformers license: other base_model: trl-lib/qwen1.5-0.5b-sft tags: - alignment-handbook - trl - simpo - generated_from_trainer - trl - simpo - generated_from_trainer datasets: - yakazimir/ultrafeedback_binarized model-index: - name: qwen_ce_entropy results: [] --- # qwen_ce_entropy This model is a fine-tuned version of [trl-lib/qwen1.5-0.5b-sft](https://huggingface.co/trl-lib/qwen1.5-0.5b-sft) on the yakazimir/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 1.2625 - Rewards/chosen: -1.2622 - Rewards/rejected: -1.3864 - Rewards/accuracies: 0.5475 - Rewards/margins: 0.1242 - Logps/rejected: -1.3864 - Logps/chosen: -1.2622 - Logits/rejected: 0.1431 - Logits/chosen: 0.0760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 1.2903 | 0.2141 | 400 | 1.3234 | -1.3231 | -1.4418 | 0.5556 | 0.1187 | -1.4418 | -1.3231 | 0.3478 | 0.2657 | | 1.2586 | 0.4282 | 800 | 1.2926 | -1.2924 | -1.4167 | 0.5482 | 0.1243 | -1.4167 | -1.2924 | 0.3140 | 0.2391 | | 1.217 | 0.6422 | 1200 | 1.2836 | -1.2833 | -1.4047 | 0.5475 | 0.1213 | -1.4047 | -1.2833 | 0.2906 | 0.2178 | | 1.299 | 0.8563 | 1600 | 1.2774 | -1.2772 | -1.3985 | 0.5467 | 0.1213 | -1.3985 | -1.2772 | 0.2371 | 0.1683 | | 1.2617 | 1.0704 | 2000 | 1.2726 | -1.2724 | -1.3958 | 0.5482 | 0.1234 | -1.3958 | -1.2724 | 0.1842 | 0.1180 | | 1.1894 | 1.2845 | 2400 | 1.2689 | -1.2687 | -1.3924 | 0.5460 | 0.1238 | -1.3924 | -1.2687 | 0.1212 | 0.0586 | | 1.2779 | 1.4986 | 2800 | 1.2662 | -1.2659 | -1.3880 | 0.5453 | 0.1221 | -1.3880 | -1.2659 | 0.1199 | 0.0573 | | 1.225 | 1.7127 | 3200 | 1.2650 | -1.2647 | -1.3872 | 0.5490 | 0.1225 | -1.3872 | -1.2647 | 0.1854 | 0.1171 | | 1.1621 | 1.9267 | 3600 | 1.2636 | -1.2634 | -1.3853 | 0.5475 | 0.1219 | -1.3853 | -1.2634 | 0.1551 | 0.0880 | | 1.1565 | 2.1408 | 4000 | 1.2633 | -1.2631 | -1.3880 | 0.5482 | 0.1250 | -1.3880 | -1.2631 | 0.0952 | 0.0325 | | 1.1515 | 2.3549 | 4400 | 1.2629 | -1.2626 | -1.3868 | 0.5467 | 0.1242 | -1.3868 | -1.2626 | 0.0880 | 0.0251 | | 1.1364 | 2.5690 | 4800 | 1.2625 | -1.2623 | -1.3865 | 0.5467 | 0.1242 | -1.3865 | -1.2623 | 0.1292 | 0.0630 | | 1.1256 | 2.7831 | 5200 | 1.2626 | -1.2623 | -1.3864 | 0.5475 | 0.1241 | -1.3864 | -1.2623 | 0.1208 | 0.0553 | | 1.1655 | 2.9972 | 5600 | 1.2625 | -1.2622 | -1.3864 | 0.5475 | 0.1242 | -1.3864 | -1.2622 | 0.1431 | 0.0760 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1