SentenceTransformer based on sentence-transformers/stsb-distilbert-base
This is a sentence-transformers model finetuned from sentence-transformers/stsb-distilbert-base on the quora-duplicates dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/stsb-distilbert-base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/stsb-distilbert-base-ocl")
# Run inference
sentences = [
'What is the best fact checking sources that all Quorans will most trust?',
'What is the most memorable book that Quorans have read?',
'Is working in McKinsey one of the best and surest ways to get into Harvard Business School?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
quora-duplicates
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.869 |
cosine_accuracy_threshold | 0.8137 |
cosine_f1 | 0.839 |
cosine_f1_threshold | 0.7617 |
cosine_precision | 0.7818 |
cosine_recall | 0.9053 |
cosine_ap | 0.8853 |
cosine_mcc | 0.7338 |
Paraphrase Mining
- Dataset:
quora-duplicates-dev
- Evaluated with
ParaphraseMiningEvaluator
Metric | Value |
---|---|
average_precision | 0.5427 |
f1 | 0.5533 |
precision | 0.5508 |
recall | 0.5557 |
threshold | 0.8659 |
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9298 |
cosine_accuracy@3 | 0.9732 |
cosine_accuracy@5 | 0.982 |
cosine_accuracy@10 | 0.9868 |
cosine_precision@1 | 0.9298 |
cosine_precision@3 | 0.4154 |
cosine_precision@5 | 0.2679 |
cosine_precision@10 | 0.1417 |
cosine_recall@1 | 0.8009 |
cosine_recall@3 | 0.9349 |
cosine_recall@5 | 0.9611 |
cosine_recall@10 | 0.9765 |
cosine_ndcg@10 | 0.9526 |
cosine_mrr@10 | 0.9522 |
cosine_map@100 | 0.94 |
Training Details
Training Dataset
quora-duplicates
- Dataset: quora-duplicates at 451a485
- Size: 404,290 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 6 tokens
- mean: 16.01 tokens
- max: 67 tokens
- min: 6 tokens
- mean: 15.9 tokens
- max: 72 tokens
- 0: ~64.40%
- 1: ~35.60%
- Samples:
sentence1 sentence2 label How much worse do things need to get before the "blue" states cut off welfare to the "red" states?
If the red states and the blue states were separated into two countries, which country would be more successful?
0
Can you offer me any advice on how to lose weight?
What are the best ways to lose weight? What is the best diet plan?
1
How do I break my knee?
How do I break my elbow?
0
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
quora-duplicates
- Dataset: quora-duplicates at 451a485
- Size: 404,290 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 6 tokens
- mean: 15.98 tokens
- max: 53 tokens
- min: 6 tokens
- mean: 15.9 tokens
- max: 77 tokens
- 0: ~62.00%
- 1: ~38.00%
- Samples:
sentence1 sentence2 label Which is the best SAP online training centre at Hyderabad?
Which is the best sap workflow online training institute in Hyderabad?
1
How did World War Two start?
What will most likely cause World War III?
0
How do I find a unique string from a given string in Java without methods such as split, contain, and divide?
How can I split the string "[] {() <>} []" into " [,], {, (, ..." in Java?
0
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | quora-duplicates_cosine_ap | quora-duplicates-dev_average_precision | cosine_ndcg@10 |
---|---|---|---|---|---|---|
0 | 0 | - | - | 0.7402 | 0.4200 | 0.9413 |
0.0640 | 100 | 2.481 | - | - | - | - |
0.1280 | 200 | 2.1466 | - | - | - | - |
0.1599 | 250 | - | 1.7997 | 0.8327 | 0.4596 | 0.9355 |
0.1919 | 300 | 2.0354 | - | - | - | - |
0.2559 | 400 | 1.9342 | - | - | - | - |
0.3199 | 500 | 1.9132 | 1.6231 | 0.8617 | 0.4896 | 0.9425 |
0.3839 | 600 | 1.8015 | - | - | - | - |
0.4479 | 700 | 1.7407 | - | - | - | - |
0.4798 | 750 | - | 1.4953 | 0.8737 | 0.5112 | 0.9468 |
0.5118 | 800 | 1.6454 | - | - | - | - |
0.5758 | 900 | 1.6568 | - | - | - | - |
0.6398 | 1000 | 1.6811 | 1.4678 | 0.8751 | 0.5290 | 0.9457 |
0.7038 | 1100 | 1.711 | - | - | - | - |
0.7678 | 1200 | 1.6449 | - | - | - | - |
0.7997 | 1250 | - | 1.4363 | 0.8811 | 0.5327 | 0.9507 |
0.8317 | 1300 | 1.5921 | - | - | - | - |
0.8957 | 1400 | 1.5062 | - | - | - | - |
0.9597 | 1500 | 1.5728 | 1.4029 | 0.8853 | 0.5427 | 0.9526 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for yahyaabd/stsb-distilbert-base-ocl
Base model
sentence-transformers/stsb-distilbert-baseDataset used to train yahyaabd/stsb-distilbert-base-ocl
Evaluation results
- Cosine Accuracy on quora duplicatesself-reported0.869
- Cosine Accuracy Threshold on quora duplicatesself-reported0.814
- Cosine F1 on quora duplicatesself-reported0.839
- Cosine F1 Threshold on quora duplicatesself-reported0.762
- Cosine Precision on quora duplicatesself-reported0.782
- Cosine Recall on quora duplicatesself-reported0.905
- Cosine Ap on quora duplicatesself-reported0.885
- Cosine Mcc on quora duplicatesself-reported0.734
- Average Precision on quora duplicates devself-reported0.543
- F1 on quora duplicates devself-reported0.553