SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the query-pos-neg-doc-pairs-statictable dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1-7")
# Run inference
sentences = [
'Aliran dana Rupiah: Q1 2008',
'IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor), 2012-2014 (2012=100)',
'Ringkasan Neraca Arus Dana, 2012 (Miliar Rupiah)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Datasets:
allstats-semantic-mini-v1_test
andallstats-semantic-mini-v1_dev
- Evaluated with
BinaryClassificationEvaluator
Metric | allstats-semantic-mini-v1_test | allstats-semantic-mini-v1_dev |
---|---|---|
cosine_accuracy | 0.9679 | 0.9678 |
cosine_accuracy_threshold | 0.7482 | 0.7902 |
cosine_f1 | 0.9678 | 0.9674 |
cosine_f1_threshold | 0.7444 | 0.7875 |
cosine_precision | 0.9596 | 0.9617 |
cosine_recall | 0.9762 | 0.9731 |
cosine_ap | 0.9922 | 0.993 |
cosine_mcc | 0.9359 | 0.9357 |
Training Details
Training Dataset
query-pos-neg-doc-pairs-statictable
- Dataset: query-pos-neg-doc-pairs-statictable at a31b58d
- Size: 110,773 training samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string int details - min: 9 tokens
- mean: 21.22 tokens
- max: 50 tokens
- min: 6 tokens
- mean: 28.24 tokens
- max: 50 tokens
- 0: ~43.90%
- 1: ~56.10%
- Samples:
query doc label Data orang yang naik/turun kapal, di pelabuhan yang dikelola maupun tidak, sekitar 2015
Tabel Input-Output Indonesia Transaksi Total Atas Dasar Harga Dasar (185 Produk), 2016 (Juta Rupiah)
0
data orang yang naik/turun kapal, di pelabuhan yang dikelola maupun tidak, sekitar 2015
Tabel Input-Output Indonesia Transaksi Total Atas Dasar Harga Dasar (185 Produk), 2016 (Juta Rupiah)
0
DATA ORANG YANG NAIK/TURUN KAPAL, DI PELABUHAN YANG DIKELOLA MAUPUN TIDAK, SEKITAR 2015
Tabel Input-Output Indonesia Transaksi Total Atas Dasar Harga Dasar (185 Produk), 2016 (Juta Rupiah)
0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Evaluation Dataset
query-pos-neg-doc-pairs-statictable
- Dataset: query-pos-neg-doc-pairs-statictable at a31b58d
- Size: 23,763 evaluation samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string int details - min: 7 tokens
- mean: 20.75 tokens
- max: 57 tokens
- min: 6 tokens
- mean: 27.44 tokens
- max: 43 tokens
- 0: ~50.20%
- 1: ~49.80%
- Samples:
query doc label Cek penghasilan bulanan (gaji bersih) buruh/pegawai, per provinsi dan jenis pekerjaannya, 2019
Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama, 2021
1
cek penghasilan bulanan (gaji bersih) buruh/pegawai, per provinsi dan jenis pekerjaannya, 2019
Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama, 2021
1
CEK PENGHASILAN BULANAN (GAJI BERSIH) BURUH/PEGAWAI, PER PROVINSI DAN JENIS PEKERJAANNYA, 2019
Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama, 2021
1
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 1warmup_ratio
: 0.2fp16
: Trueload_best_model_at_end
: Trueeval_on_start
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.2warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | allstats-semantic-mini-v1_test_cosine_ap | allstats-semantic-mini-v1_dev_cosine_ap |
---|---|---|---|---|---|
-1 | -1 | - | - | 0.8699 | - |
0 | 0 | - | 0.0489 | - | 0.8658 |
0.0578 | 100 | 0.0222 | 0.0101 | - | 0.9458 |
0.1155 | 200 | 0.0087 | 0.0073 | - | 0.9631 |
0.1733 | 300 | 0.007 | 0.0059 | - | 0.9710 |
0.2311 | 400 | 0.0056 | 0.0049 | - | 0.9828 |
0.2889 | 500 | 0.0045 | 0.0044 | - | 0.9837 |
0.3466 | 600 | 0.0042 | 0.0041 | - | 0.9862 |
0.4044 | 700 | 0.0038 | 0.0038 | - | 0.9888 |
0.4622 | 800 | 0.0037 | 0.0037 | - | 0.9890 |
0.5199 | 900 | 0.0029 | 0.0036 | - | 0.9889 |
0.5777 | 1000 | 0.0031 | 0.0034 | - | 0.9907 |
0.6355 | 1100 | 0.0029 | 0.0033 | - | 0.9923 |
0.6932 | 1200 | 0.0025 | 0.0034 | - | 0.9922 |
0.7510 | 1300 | 0.0025 | 0.0033 | - | 0.9929 |
0.8088 | 1400 | 0.0024 | 0.0033 | - | 0.9928 |
0.8666 | 1500 | 0.0022 | 0.0033 | - | 0.9926 |
0.9243 | 1600 | 0.0023 | 0.0033 | - | 0.9929 |
0.9821 | 1700 | 0.0022 | 0.0032 | - | 0.993 |
-1 | -1 | - | - | 0.9922 | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for yahyaabd/allstats-search-miniLM-v1-7
Dataset used to train yahyaabd/allstats-search-miniLM-v1-7
Evaluation results
- Cosine Accuracy on allstats semantic mini v1 testself-reported0.968
- Cosine Accuracy Threshold on allstats semantic mini v1 testself-reported0.748
- Cosine F1 on allstats semantic mini v1 testself-reported0.968
- Cosine F1 Threshold on allstats semantic mini v1 testself-reported0.744
- Cosine Precision on allstats semantic mini v1 testself-reported0.960
- Cosine Recall on allstats semantic mini v1 testself-reported0.976
- Cosine Ap on allstats semantic mini v1 testself-reported0.992
- Cosine Mcc on allstats semantic mini v1 testself-reported0.936
- Cosine Accuracy on allstats semantic mini v1 devself-reported0.968
- Cosine Accuracy Threshold on allstats semantic mini v1 devself-reported0.790