SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the query-hard-pos-neg-doc-pairs-statictable dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1-3")
# Run inference
sentences = [
'Arus dana Q3 2006',
'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)',
'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Datasets:
allstats-semantic-mini-v1_test
andallstats-semantic-mini-v1_dev
- Evaluated with
BinaryClassificationEvaluator
Metric | allstats-semantic-mini-v1_test | allstats-semantic-mini-v1_dev |
---|---|---|
cosine_accuracy | 0.965 | 0.9651 |
cosine_accuracy_threshold | 0.6882 | 0.6834 |
cosine_f1 | 0.9462 | 0.9465 |
cosine_f1_threshold | 0.6882 | 0.6834 |
cosine_precision | 0.9409 | 0.9415 |
cosine_recall | 0.9515 | 0.9515 |
cosine_ap | 0.9858 | 0.9862 |
cosine_mcc | 0.9203 | 0.9207 |
Training Details
Training Dataset
query-hard-pos-neg-doc-pairs-statictable
- Dataset: query-hard-pos-neg-doc-pairs-statictable at 7b28b96
- Size: 25,580 training samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string int details - min: 7 tokens
- mean: 20.14 tokens
- max: 55 tokens
- min: 5 tokens
- mean: 24.9 tokens
- max: 47 tokens
- 0: ~70.80%
- 1: ~29.20%
- Samples:
query doc label Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020
Jumlah Penghuni Lapas per Kanwil
0
status pekerjaan utama penduduk usia 15+ yang bekerja, 2020
Jumlah Penghuni Lapas per Kanwil
0
STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020
Jumlah Penghuni Lapas per Kanwil
0
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
query-hard-pos-neg-doc-pairs-statictable
- Dataset: query-hard-pos-neg-doc-pairs-statictable at 7b28b96
- Size: 5,479 evaluation samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string int details - min: 7 tokens
- mean: 20.78 tokens
- max: 52 tokens
- min: 4 tokens
- mean: 26.28 tokens
- max: 43 tokens
- 0: ~71.50%
- 1: ~28.50%
- Samples:
query doc label Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?
Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017
0
bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014?
Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017
0
BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014?
Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017
0
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Trueeval_on_start
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | allstats-semantic-mini-v1_test_cosine_ap | allstats-semantic-mini-v1_dev_cosine_ap |
---|---|---|---|---|---|
-1 | -1 | - | - | 0.8789 | - |
0 | 0 | - | 0.4455 | - | 0.8789 |
0.0125 | 20 | 0.4484 | 0.3363 | - | 0.8893 |
0.0250 | 40 | 0.1921 | 0.2230 | - | 0.9052 |
0.0375 | 60 | 0.1779 | 0.1435 | - | 0.9440 |
0.0500 | 80 | 0.1047 | 0.1269 | - | 0.9511 |
0.0625 | 100 | 0.0669 | 0.1498 | - | 0.9445 |
0.0750 | 120 | 0.1662 | 0.1028 | - | 0.9630 |
0.0876 | 140 | 0.0774 | 0.1115 | - | 0.9589 |
0.1001 | 160 | 0.0947 | 0.1204 | - | 0.9500 |
0.1126 | 180 | 0.1285 | 0.1464 | - | 0.9456 |
0.1251 | 200 | 0.0793 | 0.1024 | - | 0.9600 |
0.1376 | 220 | 0.0792 | 0.0992 | - | 0.9607 |
0.1501 | 240 | 0.0696 | 0.0931 | - | 0.9642 |
0.1626 | 260 | 0.0692 | 0.1205 | - | 0.9538 |
0.1751 | 280 | 0.1015 | 0.0980 | - | 0.9629 |
0.1876 | 300 | 0.0628 | 0.1001 | - | 0.9634 |
0.2001 | 320 | 0.0335 | 0.1094 | - | 0.9650 |
0.2126 | 340 | 0.0668 | 0.0941 | - | 0.9673 |
0.2251 | 360 | 0.0662 | 0.0765 | - | 0.9748 |
0.2376 | 380 | 0.0251 | 0.0674 | - | 0.9784 |
0.2502 | 400 | 0.0771 | 0.0667 | - | 0.9805 |
0.2627 | 420 | 0.0363 | 0.0576 | - | 0.9785 |
0.2752 | 440 | 0.0762 | 0.0787 | - | 0.9726 |
0.2877 | 460 | 0.0475 | 0.0649 | - | 0.9773 |
0.3002 | 480 | 0.0086 | 0.0692 | - | 0.9760 |
0.3127 | 500 | 0.0242 | 0.0636 | - | 0.9771 |
0.3252 | 520 | 0.0342 | 0.0700 | - | 0.9758 |
0.3377 | 540 | 0.0568 | 0.0547 | - | 0.9792 |
0.3502 | 560 | 0.0286 | 0.0508 | - | 0.9808 |
0.3627 | 580 | 0.0426 | 0.0518 | - | 0.9823 |
0.3752 | 600 | 0.03 | 0.0553 | - | 0.9806 |
0.3877 | 620 | 0.0146 | 0.0826 | - | 0.9748 |
0.4003 | 640 | 0.0417 | 0.0667 | - | 0.9779 |
0.4128 | 660 | 0.0081 | 0.0667 | - | 0.9775 |
0.4253 | 680 | 0.0094 | 0.0704 | - | 0.9798 |
0.4378 | 700 | 0.0225 | 0.0525 | - | 0.9841 |
0.4503 | 720 | 0.0217 | 0.0462 | - | 0.9861 |
0.4628 | 740 | 0.011 | 0.0466 | - | 0.9858 |
0.4753 | 760 | 0.0191 | 0.0495 | - | 0.9846 |
0.4878 | 780 | 0.0146 | 0.0478 | - | 0.9847 |
0.5003 | 800 | 0.0076 | 0.0424 | - | 0.9852 |
0.5128 | 820 | 0.035 | 0.0549 | - | 0.9821 |
0.5253 | 840 | 0.0321 | 0.0551 | - | 0.9796 |
0.5378 | 860 | 0.0241 | 0.0559 | - | 0.9781 |
0.5503 | 880 | 0.0335 | 0.0525 | - | 0.9792 |
0.5629 | 900 | 0.0125 | 0.0539 | - | 0.9799 |
0.5754 | 920 | 0.0154 | 0.0512 | - | 0.9823 |
0.5879 | 940 | 0.0133 | 0.0497 | - | 0.9824 |
0.6004 | 960 | 0.0072 | 0.0532 | - | 0.9821 |
0.6129 | 980 | 0.0192 | 0.0520 | - | 0.9809 |
0.6254 | 1000 | 0.0199 | 0.0503 | - | 0.9811 |
0.6379 | 1020 | 0.0069 | 0.0484 | - | 0.9824 |
0.6504 | 1040 | 0.0065 | 0.0514 | - | 0.9806 |
0.6629 | 1060 | 0.0098 | 0.0479 | - | 0.9834 |
0.6754 | 1080 | 0.0 | 0.0480 | - | 0.9841 |
0.6879 | 1100 | 0.0247 | 0.0508 | - | 0.9835 |
0.7004 | 1120 | 0.0137 | 0.0481 | - | 0.9842 |
0.7129 | 1140 | 0.0068 | 0.0512 | - | 0.9838 |
0.7255 | 1160 | 0.0182 | 0.0473 | - | 0.9851 |
0.7380 | 1180 | 0.0129 | 0.0442 | - | 0.9859 |
0.7505 | 1200 | 0.0 | 0.0436 | - | 0.9860 |
0.7630 | 1220 | 0.0073 | 0.0439 | - | 0.9858 |
0.7755 | 1240 | 0.0081 | 0.0441 | - | 0.9859 |
0.7880 | 1260 | 0.0305 | 0.0460 | - | 0.9857 |
0.8005 | 1280 | 0.0003 | 0.0486 | - | 0.9851 |
0.8130 | 1300 | 0.0218 | 0.0501 | - | 0.9852 |
0.8255 | 1320 | 0.0187 | 0.0435 | - | 0.9844 |
0.8380 | 1340 | 0.0205 | 0.0437 | - | 0.9846 |
0.8505 | 1360 | 0.0094 | 0.0442 | - | 0.9851 |
0.8630 | 1380 | 0.0083 | 0.0426 | - | 0.9856 |
0.8755 | 1400 | 0.0 | 0.0423 | - | 0.9858 |
0.8881 | 1420 | 0.0 | 0.0424 | - | 0.9859 |
0.9006 | 1440 | 0.0073 | 0.0428 | - | 0.9859 |
0.9131 | 1460 | 0.0075 | 0.0441 | - | 0.9859 |
0.9256 | 1480 | 0.0177 | 0.0447 | - | 0.9858 |
0.9381 | 1500 | 0.0 | 0.0438 | - | 0.9858 |
0.9506 | 1520 | 0.0 | 0.0438 | - | 0.9858 |
0.9631 | 1540 | 0.0072 | 0.0440 | - | 0.9860 |
0.9756 | 1560 | 0.0101 | 0.0436 | - | 0.9861 |
0.9881 | 1580 | 0.0277 | 0.0437 | - | 0.9862 |
-1 | -1 | - | - | 0.9858 | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for yahyaabd/allstats-search-miniLM-v1-3
Dataset used to train yahyaabd/allstats-search-miniLM-v1-3
Evaluation results
- Cosine Accuracy on allstats semantic mini v1 testself-reported0.965
- Cosine Accuracy Threshold on allstats semantic mini v1 testself-reported0.688
- Cosine F1 on allstats semantic mini v1 testself-reported0.946
- Cosine F1 Threshold on allstats semantic mini v1 testself-reported0.688
- Cosine Precision on allstats semantic mini v1 testself-reported0.941
- Cosine Recall on allstats semantic mini v1 testself-reported0.952
- Cosine Ap on allstats semantic mini v1 testself-reported0.986
- Cosine Mcc on allstats semantic mini v1 testself-reported0.920
- Cosine Accuracy on allstats semantic mini v1 devself-reported0.965
- Cosine Accuracy Threshold on allstats semantic mini v1 devself-reported0.683