SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the statictable-triplets-all dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-mini-v1-2")
# Run inference
sentences = [
'Status pernikahan penduduk (10+) tiap provinsi, data 2012',
'Persentase Penduduk Berumur 10 Tahun ke Atas menurut Provinsi, Jenis Kelamin, dan Status Perkawinan, 2009-2018',
'Ekspor Batu Bara Menurut Negara Tujuan Utama, 2012-2023',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
bps-statictable-ir
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.899 |
cosine_accuracy@3 | 0.9739 |
cosine_accuracy@5 | 0.9805 |
cosine_accuracy@10 | 0.987 |
cosine_precision@1 | 0.899 |
cosine_precision@3 | 0.3518 |
cosine_precision@5 | 0.23 |
cosine_precision@10 | 0.1342 |
cosine_recall@1 | 0.7038 |
cosine_recall@3 | 0.7774 |
cosine_recall@5 | 0.7896 |
cosine_recall@10 | 0.8148 |
cosine_ndcg@10 | 0.8242 |
cosine_mrr@10 | 0.9362 |
cosine_map@100 | 0.7641 |
Training Details
Training Dataset
statictable-triplets-all
- Dataset: statictable-triplets-all at 24979b4
- Size: 967,831 training samples
- Columns:
query
,pos
, andneg
- Approximate statistics based on the first 1000 samples:
query pos neg type string string string details - min: 5 tokens
- mean: 18.35 tokens
- max: 37 tokens
- min: 4 tokens
- mean: 25.22 tokens
- max: 58 tokens
- min: 4 tokens
- mean: 25.78 tokens
- max: 58 tokens
- Samples:
query pos neg Jumlah bank dan kantor bank di Indonesia, 2010-2017
Bank dan Kantor Bank, 2010-2017
Rata-Rata Pengeluaran per Kapita Sebulan Menurut Kelompok Barang (rupiah), 1998-2012
Konsumsi makanan mingguan per orang di Sulteng: beda tingkat pengeluaran (2021)
Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Selatan, 2018-2023
IHK, Upah Nominal, Indeks Upah Nominal dan Riil Buruh Industri Berstatus di bawah Mandor Menurut Wilayah, 2008-2014 (2007=100)
Impor semen Indonesia, negara asal utama, 2021
Impor Semen Menurut Negara Asal Utama, 2017-2023
Penerimaan dari Wisatawan Mancanegara Menurut Negara Tempat Tinggal (juta US$), 2000-2014
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
statictable-triplets-all
- Dataset: statictable-triplets-all at 24979b4
- Size: 967,831 evaluation samples
- Columns:
query
,pos
, andneg
- Approximate statistics based on the first 1000 samples:
query pos neg type string string string details - min: 5 tokens
- mean: 18.39 tokens
- max: 37 tokens
- min: 4 tokens
- mean: 25.22 tokens
- max: 50 tokens
- min: 4 tokens
- mean: 25.33 tokens
- max: 58 tokens
- Samples:
query pos neg Bagaimana hubungan antara bidang pekerjaan utama dan pendidikan pekerja 15+ di minggu lalu (tahun 2016)?
Penduduk Berumur 15 Tahun Ke Atas yang Bekerja Selama Seminggu yang Lalu Menurut Lapangan Pekerjaan Utama dan Pendidikan Tertinggi yang Ditamatkan, 2008 - 2024
Bank dan Kantor Bank, 2010-2017
Tren indikator kondisi perumahan, 2001
Indikator Perumahan 1993-2023
Banyaknya Desa/Kelurahan Menurut Keberadaan Kelompok Pertokoan, Pasar, dan Kios Sarana Produksi Pertanian (Saprotan), 2014 & 2018
Gaji bersih rata-rata: Per pendidikan & lapangan kerja utama, Indonesia, 2021
Rata-rata Upah/Gaji Bersih sebulan Buruh/Karyawan Pegawai Menurut Pendidikan Tertinggi dan Lapangan Pekerjaan Utama, 2021
[Seri 2000] Laju Pertumbuhan Kumulatif PDB Menurut Lapangan Usaha (Persen), 2001-2014
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Trueeval_on_start
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | bps-statictable-ir_cosine_ndcg@10 |
---|---|---|---|---|
0 | 0 | - | 1.1084 | 0.4644 |
0.0070 | 20 | 1.0801 | 0.8303 | 0.5117 |
0.0139 | 40 | 0.6994 | 0.4459 | 0.6310 |
0.0209 | 60 | 0.3674 | 0.2510 | 0.7155 |
0.0278 | 80 | 0.2814 | 0.1829 | 0.7521 |
0.0348 | 100 | 0.1746 | 0.1303 | 0.7751 |
0.0418 | 120 | 0.1867 | 0.1001 | 0.7772 |
0.0487 | 140 | 0.1047 | 0.0819 | 0.7857 |
0.0557 | 160 | 0.1032 | 0.0739 | 0.7960 |
0.0626 | 180 | 0.0783 | 0.0645 | 0.7861 |
0.0696 | 200 | 0.0575 | 0.0567 | 0.7849 |
0.0765 | 220 | 0.0969 | 0.0454 | 0.7945 |
0.0835 | 240 | 0.0769 | 0.0433 | 0.7890 |
0.0905 | 260 | 0.0864 | 0.0507 | 0.7848 |
0.0974 | 280 | 0.0495 | 0.0347 | 0.8052 |
0.1044 | 300 | 0.0429 | 0.0398 | 0.7955 |
0.1113 | 320 | 0.0432 | 0.0343 | 0.7915 |
0.1183 | 340 | 0.0392 | 0.0295 | 0.8177 |
0.1253 | 360 | 0.0211 | 0.0298 | 0.8052 |
0.1322 | 380 | 0.043 | 0.0339 | 0.8052 |
0.1392 | 400 | 0.0453 | 0.0322 | 0.8050 |
0.1461 | 420 | 0.0309 | 0.0286 | 0.8120 |
0.1531 | 440 | 0.0147 | 0.0321 | 0.8181 |
0.1601 | 460 | 0.0491 | 0.0273 | 0.8178 |
0.1670 | 480 | 0.0229 | 0.0232 | 0.8176 |
0.1740 | 500 | 0.0317 | 0.0210 | 0.8198 |
0.1809 | 520 | 0.0193 | 0.0207 | 0.8159 |
0.1879 | 540 | 0.034 | 0.0175 | 0.8191 |
0.1949 | 560 | 0.0292 | 0.0168 | 0.8166 |
0.2018 | 580 | 0.0431 | 0.0184 | 0.8228 |
0.2088 | 600 | 0.0306 | 0.0183 | 0.7963 |
0.2157 | 620 | 0.0134 | 0.0147 | 0.8216 |
0.2227 | 640 | 0.0155 | 0.0161 | 0.8166 |
0.2296 | 660 | 0.0201 | 0.0187 | 0.8170 |
0.2366 | 680 | 0.0301 | 0.0133 | 0.8272 |
0.2436 | 700 | 0.0164 | 0.0119 | 0.8274 |
0.2505 | 720 | 0.0254 | 0.0119 | 0.8223 |
0.2575 | 740 | 0.0129 | 0.0146 | 0.8165 |
0.2644 | 760 | 0.0208 | 0.0136 | 0.8162 |
0.2714 | 780 | 0.0157 | 0.0138 | 0.8120 |
0.2784 | 800 | 0.0169 | 0.0143 | 0.8248 |
0.2853 | 820 | 0.0158 | 0.0119 | 0.8166 |
0.2923 | 840 | 0.0227 | 0.0115 | 0.8153 |
0.2992 | 860 | 0.0196 | 0.0117 | 0.8163 |
0.3062 | 880 | 0.0137 | 0.0112 | 0.8225 |
0.3132 | 900 | 0.0299 | 0.0090 | 0.8155 |
0.3201 | 920 | 0.0073 | 0.0106 | 0.8157 |
0.3271 | 940 | 0.0248 | 0.0088 | 0.8174 |
0.3340 | 960 | 0.0179 | 0.0087 | 0.8215 |
0.3410 | 980 | 0.0171 | 0.0077 | 0.8285 |
0.3479 | 1000 | 0.0123 | 0.0096 | 0.8175 |
0.3549 | 1020 | 0.0081 | 0.0098 | 0.8152 |
0.3619 | 1040 | 0.0097 | 0.0094 | 0.8139 |
0.3688 | 1060 | 0.0379 | 0.0107 | 0.8236 |
0.3758 | 1080 | 0.0104 | 0.0078 | 0.8208 |
0.3827 | 1100 | 0.0067 | 0.0065 | 0.8189 |
0.3897 | 1120 | 0.0128 | 0.0080 | 0.8221 |
0.3967 | 1140 | 0.0049 | 0.0078 | 0.8181 |
0.4036 | 1160 | 0.0084 | 0.0092 | 0.8218 |
0.4106 | 1180 | 0.0173 | 0.0081 | 0.8248 |
0.4175 | 1200 | 0.0144 | 0.0080 | 0.8272 |
0.4245 | 1220 | 0.0025 | 0.0077 | 0.8260 |
0.4315 | 1240 | 0.0086 | 0.0072 | 0.8312 |
0.4384 | 1260 | 0.0114 | 0.0073 | 0.8242 |
0.4454 | 1280 | 0.0065 | 0.0067 | 0.8245 |
0.4523 | 1300 | 0.0132 | 0.0069 | 0.8248 |
0.4593 | 1320 | 0.003 | 0.0066 | 0.8233 |
0.4662 | 1340 | 0.0125 | 0.0066 | 0.8245 |
0.4732 | 1360 | 0.0016 | 0.0070 | 0.8281 |
0.4802 | 1380 | 0.0041 | 0.0066 | 0.8418 |
0.4871 | 1400 | 0.0117 | 0.0073 | 0.8361 |
0.4941 | 1420 | 0.0095 | 0.0073 | 0.8337 |
0.5010 | 1440 | 0.0184 | 0.0071 | 0.8282 |
0.5080 | 1460 | 0.0042 | 0.0069 | 0.8259 |
0.5150 | 1480 | 0.0077 | 0.0065 | 0.8235 |
0.5219 | 1500 | 0.0213 | 0.0059 | 0.8209 |
0.5289 | 1520 | 0.0037 | 0.0059 | 0.8277 |
0.5358 | 1540 | 0.0053 | 0.0053 | 0.8186 |
0.5428 | 1560 | 0.0045 | 0.0071 | 0.8238 |
0.5498 | 1580 | 0.0013 | 0.0101 | 0.8257 |
0.5567 | 1600 | 0.017 | 0.0051 | 0.8292 |
0.5637 | 1620 | 0.0053 | 0.0045 | 0.8234 |
0.5706 | 1640 | 0.0077 | 0.0044 | 0.8235 |
0.5776 | 1660 | 0.0135 | 0.0046 | 0.8200 |
0.5846 | 1680 | 0.0013 | 0.0045 | 0.8242 |
0.5915 | 1700 | 0.0067 | 0.0048 | 0.8266 |
0.5985 | 1720 | 0.0154 | 0.0049 | 0.8232 |
0.6054 | 1740 | 0.0037 | 0.0048 | 0.8222 |
0.6124 | 1760 | 0.0012 | 0.0049 | 0.8232 |
0.6193 | 1780 | 0.0112 | 0.0051 | 0.8212 |
0.6263 | 1800 | 0.0173 | 0.0056 | 0.8228 |
0.6333 | 1820 | 0.0044 | 0.0059 | 0.8177 |
0.6402 | 1840 | 0.0193 | 0.0059 | 0.8197 |
0.6472 | 1860 | 0.0028 | 0.0060 | 0.8203 |
0.6541 | 1880 | 0.005 | 0.0054 | 0.8278 |
0.6611 | 1900 | 0.0077 | 0.0049 | 0.8227 |
0.6681 | 1920 | 0.0126 | 0.0040 | 0.8267 |
0.6750 | 1940 | 0.008 | 0.0039 | 0.8258 |
0.6820 | 1960 | 0.0131 | 0.0039 | 0.8251 |
0.6889 | 1980 | 0.0114 | 0.0042 | 0.8310 |
0.6959 | 2000 | 0.0083 | 0.0041 | 0.8314 |
0.7029 | 2020 | 0.006 | 0.0037 | 0.8303 |
0.7098 | 2040 | 0.0048 | 0.0036 | 0.8269 |
0.7168 | 2060 | 0.0165 | 0.0040 | 0.8262 |
0.7237 | 2080 | 0.0093 | 0.0035 | 0.8158 |
0.7307 | 2100 | 0.007 | 0.0031 | 0.8167 |
0.7376 | 2120 | 0.0065 | 0.0030 | 0.8248 |
0.7446 | 2140 | 0.0042 | 0.0029 | 0.8274 |
0.7516 | 2160 | 0.0111 | 0.0026 | 0.8258 |
0.7585 | 2180 | 0.0066 | 0.0028 | 0.8249 |
0.7655 | 2200 | 0.0034 | 0.0034 | 0.8244 |
0.7724 | 2220 | 0.0013 | 0.0033 | 0.8238 |
0.7794 | 2240 | 0.0025 | 0.0034 | 0.8253 |
0.7864 | 2260 | 0.0065 | 0.0034 | 0.8240 |
0.7933 | 2280 | 0.0049 | 0.0035 | 0.8258 |
0.8003 | 2300 | 0.0007 | 0.0035 | 0.8277 |
0.8072 | 2320 | 0.004 | 0.0034 | 0.8298 |
0.8142 | 2340 | 0.0013 | 0.0033 | 0.8293 |
0.8212 | 2360 | 0.0122 | 0.0032 | 0.8300 |
0.8281 | 2380 | 0.0008 | 0.0033 | 0.8285 |
0.8351 | 2400 | 0.0019 | 0.0032 | 0.8266 |
0.8420 | 2420 | 0.0033 | 0.0032 | 0.8266 |
0.8490 | 2440 | 0.0078 | 0.0024 | 0.8284 |
0.8559 | 2460 | 0.0087 | 0.0022 | 0.8272 |
0.8629 | 2480 | 0.003 | 0.0021 | 0.8255 |
0.8699 | 2500 | 0.0039 | 0.0021 | 0.8232 |
0.8768 | 2520 | 0.0054 | 0.0021 | 0.8225 |
0.8838 | 2540 | 0.0015 | 0.0021 | 0.8236 |
0.8907 | 2560 | 0.0043 | 0.0021 | 0.8245 |
0.8977 | 2580 | 0.0083 | 0.0022 | 0.8237 |
0.9047 | 2600 | 0.0029 | 0.0024 | 0.8233 |
0.9116 | 2620 | 0.0095 | 0.0025 | 0.8257 |
0.9186 | 2640 | 0.0013 | 0.0025 | 0.8263 |
0.9255 | 2660 | 0.0025 | 0.0025 | 0.8268 |
0.9325 | 2680 | 0.006 | 0.0025 | 0.8264 |
0.9395 | 2700 | 0.0078 | 0.0026 | 0.8247 |
0.9464 | 2720 | 0.0061 | 0.0025 | 0.8248 |
0.9534 | 2740 | 0.001 | 0.0025 | 0.8238 |
0.9603 | 2760 | 0.0041 | 0.0025 | 0.8233 |
0.9673 | 2780 | 0.0157 | 0.0024 | 0.8249 |
0.9743 | 2800 | 0.0039 | 0.0024 | 0.8248 |
0.9812 | 2820 | 0.0047 | 0.0024 | 0.8242 |
0.9882 | 2840 | 0.0058 | 0.0024 | 0.8243 |
0.9951 | 2860 | 0.0018 | 0.0024 | 0.8242 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for yahyaabd/allstats-search-mini-v1-2
Dataset used to train yahyaabd/allstats-search-mini-v1-2
Evaluation results
- Cosine Accuracy@1 on bps statictable irself-reported0.899
- Cosine Accuracy@3 on bps statictable irself-reported0.974
- Cosine Accuracy@5 on bps statictable irself-reported0.980
- Cosine Accuracy@10 on bps statictable irself-reported0.987
- Cosine Precision@1 on bps statictable irself-reported0.899
- Cosine Precision@3 on bps statictable irself-reported0.352
- Cosine Precision@5 on bps statictable irself-reported0.230
- Cosine Precision@10 on bps statictable irself-reported0.134
- Cosine Recall@1 on bps statictable irself-reported0.704
- Cosine Recall@3 on bps statictable irself-reported0.777