File size: 5,605 Bytes
831d69a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
SYSTEM = ''
accumulative_counts = 16
batch_size = 1
betas = (
0.9,
0.999,
)
custom_hooks = [
dict(
tokenizer=dict(
padding_side='right',
pretrained_model_name_or_path='internlm/internlm2-chat-7b',
trust_remote_code=True,
type='transformers.AutoTokenizer.from_pretrained'),
type='xtuner.engine.DatasetInfoHook'),
dict(
evaluation_inputs=[
'请给我介绍五个上海的景点',
'Please tell me five scenic spots in Shanghai',
],
every_n_iters=500,
prompt_template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
system='',
tokenizer=dict(
padding_side='right',
pretrained_model_name_or_path='internlm/internlm2-chat-7b',
trust_remote_code=True,
type='transformers.AutoTokenizer.from_pretrained'),
type='xtuner.engine.EvaluateChatHook'),
]
data_path = 'timdettmers/openassistant-guanaco'
dataloader_num_workers = 0
default_hooks = dict(
checkpoint=dict(interval=1, type='mmengine.hooks.CheckpointHook'),
logger=dict(interval=10, type='mmengine.hooks.LoggerHook'),
param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
timer=dict(type='mmengine.hooks.IterTimerHook'))
env_cfg = dict(
cudnn_benchmark=False,
dist_cfg=dict(backend='nccl'),
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
evaluation_freq = 500
evaluation_inputs = [
'请给我介绍五个上海的景点',
'Please tell me five scenic spots in Shanghai',
]
launcher = 'none'
load_from = None
log_level = 'INFO'
lr = 0.0002
max_epochs = 3
max_length = 2048
max_norm = 1
model = dict(
llm=dict(
pretrained_model_name_or_path='internlm/internlm2-chat-7b',
quantization_config=dict(
bnb_4bit_compute_dtype='torch.float16',
bnb_4bit_quant_type='nf4',
bnb_4bit_use_double_quant=True,
llm_int8_has_fp16_weight=False,
llm_int8_threshold=6.0,
load_in_4bit=True,
load_in_8bit=False,
type='transformers.BitsAndBytesConfig'),
torch_dtype='torch.float16',
trust_remote_code=True,
type='transformers.AutoModelForCausalLM.from_pretrained'),
lora=dict(
bias='none',
lora_alpha=16,
lora_dropout=0.1,
r=64,
task_type='CAUSAL_LM',
type='peft.LoraConfig'),
type='xtuner.model.SupervisedFinetune')
optim_type = 'torch.optim.AdamW'
optim_wrapper = dict(
accumulative_counts=16,
clip_grad=dict(error_if_nonfinite=False, max_norm=1),
dtype='float16',
loss_scale='dynamic',
optimizer=dict(
betas=(
0.9,
0.999,
),
lr=0.0002,
type='torch.optim.AdamW',
weight_decay=0),
type='mmengine.optim.AmpOptimWrapper')
pack_to_max_length = True
param_scheduler = [
dict(
begin=0,
by_epoch=True,
convert_to_iter_based=True,
end=0.09,
start_factor=1e-05,
type='mmengine.optim.LinearLR'),
dict(
T_max=3,
begin=0.09,
by_epoch=True,
convert_to_iter_based=True,
eta_min=0.0,
type='mmengine.optim.CosineAnnealingLR'),
]
pretrained_model_name_or_path = 'internlm/internlm2-chat-7b'
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
randomness = dict(deterministic=False, seed=None)
resume = False
tokenizer = dict(
padding_side='right',
pretrained_model_name_or_path='internlm/internlm2-chat-7b',
trust_remote_code=True,
type='transformers.AutoTokenizer.from_pretrained')
train_cfg = dict(by_epoch=True, max_epochs=3, val_interval=1)
train_dataloader = dict(
batch_size=1,
collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
dataset=dict(
dataset=dict(
path='timdettmers/openassistant-guanaco',
type='datasets.load_dataset'),
dataset_map_fn='xtuner.dataset.map_fns.oasst1_map_fn',
max_length=2048,
pack_to_max_length=True,
remove_unused_columns=True,
shuffle_before_pack=True,
template_map_fn=dict(
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
type='xtuner.dataset.map_fns.template_map_fn_factory'),
tokenizer=dict(
padding_side='right',
pretrained_model_name_or_path='internlm/internlm2-chat-7b',
trust_remote_code=True,
type='transformers.AutoTokenizer.from_pretrained'),
type='xtuner.dataset.process_hf_dataset'),
num_workers=0,
sampler=dict(shuffle=True, type='mmengine.dataset.DefaultSampler'))
train_dataset = dict(
dataset=dict(
path='timdettmers/openassistant-guanaco',
type='datasets.load_dataset'),
dataset_map_fn='xtuner.dataset.map_fns.oasst1_map_fn',
max_length=2048,
pack_to_max_length=True,
remove_unused_columns=True,
shuffle_before_pack=True,
template_map_fn=dict(
template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
type='xtuner.dataset.map_fns.template_map_fn_factory'),
tokenizer=dict(
padding_side='right',
pretrained_model_name_or_path='internlm/internlm2-chat-7b',
trust_remote_code=True,
type='transformers.AutoTokenizer.from_pretrained'),
type='xtuner.dataset.process_hf_dataset')
visualizer = None
warmup_ratio = 0.03
weight_decay = 0
work_dir = './work_dirs/internlm2_chat_7b_qlora_oasst1_e3'
|