File size: 4,107 Bytes
6a0baf1 520fe38 6a0baf1 520fe38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
---
license: apache-2.0
language:
- zh
metrics:
- accuracy
pipeline_tag: audio-classification
---
# hubert-base-ch-speech-emotion-recognition
This model uses [TencentGameMate/chinese-hubert-base]([TencentGameMate/chinese-hubert-base · Hugging Face](https://huggingface.co/TencentGameMate/chinese-hubert-base)) as the pre-training model for training on the CASIA dataset.
The CASIA dataset provides 1200 samples of recordings from actor performing on 6 different emotions in Chinese(The official website provides a total of 9600 pieces of data, and the data set I used may not be complete), which are:
```python
emotions = ['anger', 'fear', 'happy', 'neutral', 'sad', 'surprise']
```
# Usage
```python
import os
import random
import librosa
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoConfig, Wav2Vec2FeatureExtractor, HubertPreTrainedModel, HubertModel
model_name_or_path = "xmj2002/hubert-base-ch-speech-emotion-recognition"
duration = 6
sample_rate = 16000
config = AutoConfig.from_pretrained(
pretrained_model_name_or_path=model_name_or_path,
)
def id2class(id):
if id == 0:
return "angry"
elif id == 1:
return "fear"
elif id == 2:
return "happy"
elif id == 3:
return "neutral"
elif id == 4:
return "sad"
else:
return "surprise"
def predict(path, processor, model):
speech, sr = librosa.load(path=path, sr=sample_rate)
speech = processor(speech, padding="max_length", truncation=True, max_length=duration * sr,
return_tensors="pt", sampling_rate=sr).input_values
with torch.no_grad():
logit = model(speech)
score = F.softmax(logit, dim=1).detach().cpu().numpy()[0]
id = torch.argmax(logit).cpu().numpy()
print(f"file path: {path} \t predict: {id2class(id)} \t score:{score[id]} ")
class HubertClassificationHead(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.classifier_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_class)
def forward(self, x):
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class HubertForSpeechClassification(HubertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.hubert = HubertModel(config)
self.classifier = HubertClassificationHead(config)
self.init_weights()
def forward(self, x):
outputs = self.hubert(x)
hidden_states = outputs[0]
x = torch.mean(hidden_states, dim=1)
x = self.classifier(x)
return x
processor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
model = HubertForSpeechClassification.from_pretrained(
model_name_or_path,
config=config,
)
model.eval()
file_path = [f"test_data/{path}" for path in os.listdir("test_data")]
path = random.sample(file_path, 1)[0]
predict(path, processor, model)
```
# Training setting
* Data set segmentation ratio: training set: verification set: test set = 0.6:0.2:0.2
* seed: 34
* batch_size: 36
* lr: 2e-4
* optimizer: AdamW(betas=(0.93,0.98), weight_decay=0.2)
* scheduler: Step_LR(step_size=10, gamma=0.3)
* classifier dropout: 0.1
* optimizer parameter:
```python
for name, param in model.named_parameters():
if "hubert" in name:
parameter.append({'params': param, 'lr': 0.2 * lr})
else:
parameter.append({'params': param, "lr": lr})
```
# Metric
**Loss(test set): 0.1165**
**Accuracy(test set): 0.972**
*Accuracy curve of training set and verification set*
<div> <img src="https://huggingface.co/xmj2002/hubert-base-ch-speech-emotion-recognition/resolve/main/accuracy.png" width = 80%/> </div>
*Loss curve of training set and verification set*
<div> <img src="https://huggingface.co/xmj2002/hubert-base-ch-speech-emotion-recognition/resolve/main/loss.png" width = 80%/> </div> |