File size: 2,050 Bytes
b5143cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e172656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5143cd
e172656
 
 
 
b5143cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO (Proximal Policy Optimization)
  results:
  - task:
      type: reinforcement-learning
      name: reinforcement-learning
    dataset:
      name: LunarLander-v2
      type: LunarLander-v2
    metrics:
    - type: mean_reward
      value: 262.09 +/- 24.76
      name: mean_reward
      verified: false
---

# **PPO (Proximal Policy Optimization)** Agent playing **LunarLander-v2**
This is a trained model of a **PPO (Proximal Policy Optimization)** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).

## Usage (with Stable-baselines3)

```python
import gymnasium

from huggingface_sb3 import load_from_hub, package_to_hub
from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub.

from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.monitor import Monitor

repo_id = "xXrobroXx/ppo-LunarLander-v2" # The repo_id
filename = "ppo-LunarLander-v2.zip" # The model filename.zip

# When the model was trained on Python 3.8 the pickle protocol is 5
# But Python 3.6, 3.7 use protocol 4
# In order to get compatibility we need to:
# 1. Install pickle5 
# 2. Create a custom empty object we pass as parameter to PPO.load()
custom_objects = {
            "learning_rate": 0.0,
            "lr_schedule": lambda _: 0.0,
            "clip_range": lambda _: 0.0,
}

checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True)

# evaluate model in test environment
eval_env = Monitor(gym.make("LunarLander-v2"))
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
```