xXrobroXx commited on
Commit
e172656
1 Parent(s): b5143cd

update usage instructions

Browse files
Files changed (1) hide show
  1. README.md +30 -5
README.md CHANGED
@@ -26,12 +26,37 @@ This is a trained model of a **PPO (Proximal Policy Optimization)** agent playin
26
  using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
  ## Usage (with Stable-baselines3)
29
- TODO: Add your code
30
-
31
 
32
  ```python
33
- from stable_baselines3 import ...
34
- from huggingface_sb3 import load_from_hub
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
- ...
 
 
 
37
  ```
 
26
  using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
  ## Usage (with Stable-baselines3)
 
 
29
 
30
  ```python
31
+ import gymnasium
32
+
33
+ from huggingface_sb3 import load_from_hub, package_to_hub
34
+ from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub.
35
+
36
+ from stable_baselines3 import PPO
37
+ from stable_baselines3.common.env_util import make_vec_env
38
+ from stable_baselines3.common.evaluation import evaluate_policy
39
+ from stable_baselines3.common.monitor import Monitor
40
+
41
+ repo_id = "xXrobroXx/ppo-LunarLander-v2" # The repo_id
42
+ filename = "ppo-LunarLander-v2.zip" # The model filename.zip
43
+
44
+ # When the model was trained on Python 3.8 the pickle protocol is 5
45
+ # But Python 3.6, 3.7 use protocol 4
46
+ # In order to get compatibility we need to:
47
+ # 1. Install pickle5
48
+ # 2. Create a custom empty object we pass as parameter to PPO.load()
49
+ custom_objects = {
50
+ "learning_rate": 0.0,
51
+ "lr_schedule": lambda _: 0.0,
52
+ "clip_range": lambda _: 0.0,
53
+ }
54
+
55
+ checkpoint = load_from_hub(repo_id, filename)
56
+ model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True)
57
 
58
+ # evaluate model in test environment
59
+ eval_env = Monitor(gym.make("LunarLander-v2"))
60
+ mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
61
+ print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
62
  ```