SentenceTransformer based on x2bee/ModernBert_MLM_kotoken_v03
This is a sentence-transformers model finetuned from x2bee/ModernBert_MLM_kotoken_v03 on the misc_sts_pairs_v2_kor dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: x2bee/ModernBert_MLM_kotoken_v03
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("x2bee/KoModernBERT-base-nli-sts-SBERT_v01")
# Run inference
sentences = [
'수동 운전석 창문을 어떻게 수리하나요?',
'1992년형 혼다 시빅에서 올라가지 않는 수동 창문을 어떻게 수리하나요?',
'아홉 번째 닥터가 멈춘 닥터 후 에피소드는 무엇입니까?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts_dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.524 |
spearman_cosine | 0.5139 |
pearson_euclidean | 0.5051 |
spearman_euclidean | 0.5001 |
pearson_manhattan | 0.5087 |
spearman_manhattan | 0.504 |
pearson_dot | 0.4545 |
spearman_dot | 0.4439 |
pearson_max | 0.524 |
spearman_max | 0.5139 |
Training Details
Training Dataset
misc_sts_pairs_v2_kor
- Dataset: misc_sts_pairs_v2_kor at 845f810
- Size: 449,904 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 17.81 tokens
- max: 49 tokens
- min: 6 tokens
- mean: 17.78 tokens
- max: 80 tokens
- min: 0.53
- mean: 0.75
- max: 0.98
- Samples:
sentence1 sentence2 score 1999년형 유콘 4륜구동 차량의 앞쪽 조수석 타이어에서 발생하는 갈리는 소음의 원인은 무엇인가요?
차의 오른쪽 앞쪽에서 발생하는 갈리는 소리의 원인은 무엇인가요?
0.8193586337477191
왜 제임스타운 정착민들은 그곳의 원주민들과 갈등을 겪었는가?
왜 제임스타운은 원주민들과 갈등을 겪었는가?
0.8701910827908218
옥수수 전분을 섭취하는 것이 건강에 어떤 영향을 미칠 수 있습니까?
옥수수 전분을 섭취하면 당신에게 어떤 영향을 미칠까요?
0.8809354609563622
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
misc_sts_pairs_v2_kor
- Dataset: misc_sts_pairs_v2_kor at 845f810
- Size: 449,904 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 17.76 tokens
- max: 65 tokens
- min: 6 tokens
- mean: 17.65 tokens
- max: 52 tokens
- min: 0.53
- mean: 0.75
- max: 0.98
- Samples:
sentence1 sentence2 score 용광로의 온도는 얼마나 뜨거운가?
용광로의 온도는 얼마나 높습니까?
0.751853250408994
영어로 'Lei è il mio uno e solo'는 어떻게 철자하나요?
'Lei è il mio uno e solo'의 영어 동등어는 무엇인가요?
0.8265661603331053
버드와이저 포커 광고에 나오는 소녀는 누구인가요?
포커 스타일의 버드와이저 광고에 나오는 소녀는 누구인가요?
0.9301912848973812
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32gradient_accumulation_steps
: 4learning_rate
: 1e-05num_train_epochs
: 2warmup_ratio
: 0.3push_to_hub
: Truehub_model_id
: x2bee/KoModernBERT-base-nli-sts-SBERT_v01batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.3warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: x2bee/KoModernBERT-base-nli-sts-SBERT_v01hub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts_dev_spearman_max |
---|---|---|---|---|
0 | 0 | - | - | 0.5070 |
0.2397 | 100 | 0.0311 | - | - |
0.4793 | 200 | 0.0082 | - | - |
0.7190 | 300 | 0.0065 | - | - |
0.9587 | 400 | 0.0061 | - | - |
1.0 | 418 | - | 0.0059 | 0.4899 |
1.1965 | 500 | 0.0058 | - | - |
1.4362 | 600 | 0.0057 | - | - |
1.6759 | 700 | 0.0055 | - | - |
1.9155 | 800 | 0.0053 | - | - |
1.9970 | 834 | - | 0.0057 | 0.5139 |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train x2bee/KoModernBERT-base-nli-sts-SBERT_v01
Evaluation results
- Pearson Cosine on sts devself-reported0.524
- Spearman Cosine on sts devself-reported0.514
- Pearson Euclidean on sts devself-reported0.505
- Spearman Euclidean on sts devself-reported0.500
- Pearson Manhattan on sts devself-reported0.509
- Spearman Manhattan on sts devself-reported0.504
- Pearson Dot on sts devself-reported0.455
- Spearman Dot on sts devself-reported0.444
- Pearson Max on sts devself-reported0.524
- Spearman Max on sts devself-reported0.514