paraphraser

This model is a fine-tuned version of t5-base on the cointegrated/ru-paraphrase-NMT-Leipzig dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2841

Intended uses & limitations

from transformers import T5TokenizerFast, T5ForConditionalGeneration

encoded = tokenizer.encode('перефразируй: В какой срок необходимо оповестить Вайлдберрис о закрытии?', return_tensors='pt')
output_sequences = model.generate(
    input_ids=encoded,
    max_length=128,
    temperature=0.7,
    top_k=0,
    top_p=0.9,
    repetition_penalty=1,
    do_sample=True,
    num_return_sequences=5,
    pad_token_id=0
)
decoded = tokenizer.batch_decode(output_sequences, skip_special_tokens=True)
# Когда нужно будет известить Вайлдберриса о закрытии?

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 141 0.2860
No log 2.0 282 0.2858
No log 3.0 423 0.2847
0.3385 4.0 564 0.2839
0.3385 5.0 705 0.2840
0.3385 6.0 846 0.2837
0.3385 7.0 987 0.2844
0.3089 8.0 1128 0.2837
0.3089 9.0 1269 0.2840
0.3089 10.0 1410 0.2841

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.14.1
Downloads last month
15
Safetensors
Model size
223M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for wyluilipe/paraphraser

Unable to build the model tree, the base model loops to the model itself. Learn more.