paraphraser
This model is a fine-tuned version of t5-base on the cointegrated/ru-paraphrase-NMT-Leipzig dataset. It achieves the following results on the evaluation set:
- Loss: 0.2841
Intended uses & limitations
from transformers import T5TokenizerFast, T5ForConditionalGeneration
encoded = tokenizer.encode('перефразируй: В какой срок необходимо оповестить Вайлдберрис о закрытии?', return_tensors='pt')
output_sequences = model.generate(
input_ids=encoded,
max_length=128,
temperature=0.7,
top_k=0,
top_p=0.9,
repetition_penalty=1,
do_sample=True,
num_return_sequences=5,
pad_token_id=0
)
decoded = tokenizer.batch_decode(output_sequences, skip_special_tokens=True)
# Когда нужно будет известить Вайлдберриса о закрытии?
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 1.0 | 141 | 0.2860 |
No log | 2.0 | 282 | 0.2858 |
No log | 3.0 | 423 | 0.2847 |
0.3385 | 4.0 | 564 | 0.2839 |
0.3385 | 5.0 | 705 | 0.2840 |
0.3385 | 6.0 | 846 | 0.2837 |
0.3385 | 7.0 | 987 | 0.2844 |
0.3089 | 8.0 | 1128 | 0.2837 |
0.3089 | 9.0 | 1269 | 0.2840 |
0.3089 | 10.0 | 1410 | 0.2841 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1
- Downloads last month
- 15
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for wyluilipe/paraphraser
Unable to build the model tree, the base model loops to the model itself. Learn more.