Harmon: Harmonizing Visual Representations for Unified Multimodal Understanding and Generation

Harmonizing Visual Representations for Unified Multimodal Understanding and Generation

Size Wu, Wenwei Zhang, Lumin Xu, Sheng Jin, Zhonghua Wu, Qingyi Tao, Wentao Liu, Wei Li, Chen Change Loy

arXiv Project Page GitHub Bibtex

Introduction

Harmon is a novel unified framework for multimodal understanding and generation. Unlike existing state-of-the-art architectures that disentangle visual understanding and generation with different encoder models, the proposed framework harmonizes the visual presentations of understanding and generation via a shared MAR encoder. Harmon achieves advanced generation performance on mainstream text-to-image generation benchmarks, and exhibits competitive results on multimodal understanding tasks. In this repo, we provide inference code to run Harmon for image understanding (image-to-text) and text-to-image generation, with two model variants Harmon-0.5B and Harmon-1.5B.

Model Variant LLM MAR Hugging Face Hub
Harmon-0.5B Qwen2.5-0.5B-Instruct MAR-Base Hugging Face
Harmon-1.5B Qwen2.5-1.5B-Instruct MAR-Huge Hugging Face

Usage

πŸ–ŒοΈ Image-to-text Generation

import torch
import numpy as np
from transformers import AutoTokenizer, AutoModel
from einops import rearrange
from PIL import Image
import requests


PROMPT_TEMPLATE = dict(
    SYSTEM='<|im_start|>system\n{system}<|im_end|>\n',
    INSTRUCTION='<|im_start|>user\n{input}<|im_end|>\n<|im_start|>assistant\n',
    SUFFIX='<|im_end|>',
    SUFFIX_AS_EOS=True,
    SEP='\n',
    STOP_WORDS=['<|im_end|>', '<|endoftext|>'])


def expand2square(pil_img, background_color):
    width, height = pil_img.size
    if width == height:
        return pil_img
    elif width > height:
        result = Image.new(pil_img.mode, (width, width), background_color)
        result.paste(pil_img, (0, (width - height) // 2))
        return result
    else:
        result = Image.new(pil_img.mode, (height, height), background_color)
        result.paste(pil_img, ((height - width) // 2, 0))
        return result


@torch.no_grad()
def question_answer(question,
                    image,
                    model,
                    tokenizer,
                    max_new_tokens=512,
                    image_size=512
                    ):
    assert image_size == 512
    image = expand2square(
        image, (127, 127, 127))
    image = image.resize(size=(image_size, image_size))
    image = torch.from_numpy(np.array(image)).to(dtype=model.dtype, device=model.device)
    image = rearrange(image, 'h w c -> c h w')[None]
    image = 2 * (image / 255) - 1

    prompt = PROMPT_TEMPLATE['INSTRUCTION'].format(input="<image>\n" + question)
    assert '<image>' in prompt
    image_length = (image_size // 16) ** 2 + model.mar.buffer_size
    prompt = prompt.replace('<image>', '<image>'*image_length)
    input_ids = tokenizer.encode(
        prompt, add_special_tokens=True, return_tensors='pt').cuda()
    _, z_enc = model.extract_visual_feature(model.encode(image))
    inputs_embeds = z_enc.new_zeros(*input_ids.shape, model.llm.config.hidden_size)
    inputs_embeds[input_ids == image_token_idx] = z_enc.flatten(0, 1)
    inputs_embeds[input_ids != image_token_idx] = model.llm.get_input_embeddings()(
        input_ids[input_ids != image_token_idx]
    )
    output = model.llm.generate(inputs_embeds=inputs_embeds,
                                use_cache=True,
                                do_sample=False,
                                max_new_tokens=max_new_tokens,
                                eos_token_id=tokenizer.eos_token_id,
                                pad_token_id=tokenizer.pad_token_id
                                if tokenizer.pad_token_id is not None else
                                tokenizer.eos_token_id
                                )
    return tokenizer.decode(output[0])


harmon_tokenizer = AutoTokenizer.from_pretrained("wusize/Harmon-0_5B",
                                                 trust_remote_code=True)
harmon_model = AutoModel.from_pretrained("wusize/Harmon-0_5B",
                                         trust_remote_code=True).eval().cuda().bfloat16()

special_tokens_dict = {'additional_special_tokens': ["<image>", ]}
num_added_toks = harmon_tokenizer.add_special_tokens(special_tokens_dict)
assert num_added_toks == 1

image_token_idx = harmon_tokenizer.encode("<image>", add_special_tokens=False)[-1]
print(f"Image token: {harmon_tokenizer.decode(image_token_idx)}")

image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
raw_image = Image.open(requests.get(image_file, stream=True).raw).convert('RGB')

output_text = question_answer(question='Describe the image in detail.',
                              image=raw_image,
                              model=harmon_model,
                              tokenizer=harmon_tokenizer,
                              )

print(output_text)

πŸ–ΌοΈ Text-to-image Generation

import os
import torch
from transformers import AutoTokenizer, AutoModel
from einops import rearrange
from PIL import Image


PROMPT_TEMPLATE = dict(
    SYSTEM='<|im_start|>system\n{system}<|im_end|>\n',
    INSTRUCTION='<|im_start|>user\n{input}<|im_end|>\n<|im_start|>assistant\n',
    SUFFIX='<|im_end|>',
    SUFFIX_AS_EOS=True,
    SEP='\n',
    STOP_WORDS=['<|im_end|>', '<|endoftext|>'])

GENERATION_TEMPLATE = "Generate an image: {text}"


@torch.no_grad()
def generate_images(prompts,
                    negative_prompt,
                    tokenizer,
                    model,
                    output,
                    grid_size=2,   # will produce 2 x 2 images per prompt
                    num_steps=64, cfg_scale=3.0, temperature=1.0, image_size=512):
    assert image_size == 512
    m = n = image_size // 16

    prompts = [
                  PROMPT_TEMPLATE['INSTRUCTION'].format(input=prompt)
                  for prompt in prompts
              ] * (grid_size ** 2)

    if cfg_scale != 1.0:
        prompts += [PROMPT_TEMPLATE['INSTRUCTION'].format(input=negative_prompt)] * len(prompts)

    inputs = tokenizer(
        prompts, add_special_tokens=True, return_tensors='pt', padding=True).to(model.device)

    images = model.sample(**inputs, num_iter=num_steps, cfg=cfg_scale, cfg_schedule="constant",
                          temperature=temperature, progress=True, image_shape=(m, n))
    images = rearrange(images, '(m n b) c h w -> b (m h) (n w) c', m=grid_size, n=grid_size)

    images = torch.clamp(
        127.5 * images + 128.0, 0, 255).to("cpu", dtype=torch.uint8).numpy()

    os.makedirs(output, exist_ok=True)
    for idx, image in enumerate(images):
        Image.fromarray(image).save(f"{output}/{idx:08d}.jpg")


harmon_tokenizer = AutoTokenizer.from_pretrained("wusize/Harmon-0_5B",
                                                 trust_remote_code=True)
harmon_model = AutoModel.from_pretrained("wusize/Harmon-0_5B",
                                         trust_remote_code=True).cuda().bfloat16().eval()


texts = ['a dog on the left and a cat on the right.',
         'a photo of a pink stop sign.']
pos_prompts = [GENERATION_TEMPLATE.format(text=text) for text in texts]
neg_prompt = 'Generate an image.'   # for classifier-free guidance


generate_images(prompts=pos_prompts,
                negative_prompt=neg_prompt,
                tokenizer=harmon_tokenizer,
                model=harmon_model,
                output='output',)

πŸ“š Citation

If you find Harmon useful for your research or applications, please cite our paper using the following BibTeX:

@misc{wu2025harmon,
      title={Harmonizing Visual Representations for Unified Multimodal Understanding and Generation}, 
      author={Size Wu and Wenwei Zhang and Lumin Xu and Sheng Jin and Zhonghua Wu and Qingyi Tao and Wentao Liu and Wei Li and Chen Change Loy},
      year={2025},
      eprint={2503.21979},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2503.21979}, 
}

πŸ“œ License

This project is licensed under NTU S-Lab License 1.0.

Downloads last month
8
Safetensors
Model size
908M params
Tensor type
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support