weibo-model-4tags

This model is a fine-tuned version of bert-base-chinese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0245
  • Accuracy: 0.7079
  • Precision: 0.7101
  • Recall: 0.7079
  • F1: 0.7081

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.1091 0.6849 50 1.0191 0.5361 0.6449 0.5361 0.4924
0.7439 1.3699 100 0.8837 0.6306 0.6446 0.6306 0.6280
0.7962 2.0548 150 0.8365 0.6615 0.6886 0.6615 0.6567
0.5132 2.7397 200 0.8698 0.6890 0.6977 0.6890 0.6841
0.2886 3.4247 250 0.9056 0.7096 0.7103 0.7096 0.7092
0.1804 4.1096 300 0.9927 0.7045 0.7071 0.7045 0.7027
0.146 4.7945 350 1.0245 0.7079 0.7101 0.7079 0.7081

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
27
Safetensors
Model size
102M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for wsqstar/weibo-model-4tags

Finetuned
(153)
this model