Back to all models
Model: wptoux/albert-chinese-large-qa

Monthly model downloads

wptoux/albert-chinese-large-qa wptoux/albert-chinese-large-qa
- downloads
last 30 days

pytorch

tf

Contributed by

wptoux wptoux
1 model

How to use this model directly from the 🤗/transformers library:

			
Copy model
tokenizer = AutoTokenizer.from_pretrained("wptoux/albert-chinese-large-qa") model = AutoModelForQuestionAnswering.from_pretrained("wptoux/albert-chinese-large-qa")

albert-chinese-large-qa

Albert large QA model pretrained from baidu webqa and baidu dureader datasets.

Data source

  • baidu webqa 1.0
  • baidu dureader

Traing Method

We combined the two datasets together and created a new dataset in squad format, including 705139 samples for training and 69638 samples for validation. We finetune the model based on the albert chinese large model.

Hyperparams

  • learning_rate 1e-5
  • max_seq_length 512
  • max_query_length 50
  • max_answer_length 300
  • doc_stride 256
  • num_train_epochs 2
  • warmup_steps 1000
  • per_gpu_train_batch_size 8
  • gradient_accumulation_steps 3
  • n_gpu 2 (Nvidia Tesla P100)

Usage

from transformers import AutoModelForQuestionAnswering, BertTokenizer

model = AutoModelForQuestionAnswering.from_pretrained('wptoux/albert-chinese-large-qa')
tokenizer = BertTokenizer.from_pretrained('wptoux/albert-chinese-large-qa')

Important: use BertTokenizer

MoreInfo

Please visit https://github.com/wptoux/albert-chinese-large-webqa for details.