Back to all models
question-answering mask_token: [MASK]
Query this model
馃敟 This model is currently loaded and running on the Inference API. 鈿狅笍 This model could not be loaded by the inference API. 鈿狅笍 This model can be loaded on the Inference API on-demand.
JSON Output
API endpoint  

鈿★笍 Upgrade your account to access the Inference API

Share Copied link to clipboard

Monthly model downloads

wptoux/albert-chinese-large-qa wptoux/albert-chinese-large-qa
last 30 days



Contributed by

wptoux wptoux
1 model

How to use this model directly from the 馃/transformers library:

Copy to clipboard
from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("wptoux/albert-chinese-large-qa") model = AutoModelForQuestionAnswering.from_pretrained("wptoux/albert-chinese-large-qa")


Albert large QA model pretrained from baidu webqa and baidu dureader datasets.

Data source

  • baidu webqa 1.0
  • baidu dureader

Traing Method

We combined the two datasets together and created a new dataset in squad format, including 705139 samples for training and 69638 samples for validation. We finetune the model based on the albert chinese large model.


  • learning_rate 1e-5
  • max_seq_length 512
  • max_query_length 50
  • max_answer_length 300
  • doc_stride 256
  • num_train_epochs 2
  • warmup_steps 1000
  • per_gpu_train_batch_size 8
  • gradient_accumulation_steps 3
  • n_gpu 2 (Nvidia Tesla P100)


from transformers import AutoModelForQuestionAnswering, BertTokenizer

model = AutoModelForQuestionAnswering.from_pretrained('wptoux/albert-chinese-large-qa')
tokenizer = BertTokenizer.from_pretrained('wptoux/albert-chinese-large-qa')

Important: use BertTokenizer


Please visit for details.