YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Koelectra-five-sentiment-classification

Koelectra on hugging face Transformers for Psychological Counseling

how to use

from transformers import ElectraModel, ElectraTokenizer

model = ElectraModel.from_pretrained("withU/Koelectra-five-sentiment-classification")
tokenizer = ElectraTokenizer.from_pretrained("withU/Koelectra-five-sentiment-classification")
categories = "withU/Koelectra-five-sentiment-classification" # 카테고리, index 파일

sentence = "나는 방금 밥을 먹었다."
inputs = tokenizer.encode(sentence, return_tensors="pt")
outputs = model(**inputs)
softmax_logit = nn.Softmax(outputs).dim
softmax_logit = softmax_logit[0].squeeze()
max_index = torch.argmax(softmax_logit).item()
prediction = max_index

print(sentence, categories[prediction])

dataset finetuned on

references

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.