wav2vec2-large-xls-r-300m-tr-colab

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4121
  • Wer: 0.3112

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.1868 1.83 400 0.9812 0.8398
0.691 3.67 800 0.5571 0.6298
0.3555 5.5 1200 0.4676 0.4779
0.2451 7.34 1600 0.4572 0.4541
0.1844 9.17 2000 0.4743 0.4389
0.1541 11.01 2400 0.4583 0.4300
0.1277 12.84 2800 0.4565 0.3950
0.1122 14.68 3200 0.4761 0.4087
0.0975 16.51 3600 0.4654 0.3786
0.0861 18.35 4000 0.4503 0.3667
0.0775 20.18 4400 0.4600 0.3581
0.0666 22.02 4800 0.4350 0.3504
0.0627 23.85 5200 0.4211 0.3349
0.0558 25.69 5600 0.4390 0.3333
0.0459 27.52 6000 0.4218 0.3185
0.0439 29.36 6400 0.4121 0.3112

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.3
  • Tokenizers 0.10.3
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train willcai/wav2vec2-large-xls-r-300m-tr-colab