XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Turkish
This model is part of our paper called:
- Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages
Check the Space for more details.
Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-tr")
model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-tr")
- Downloads last month
- 105
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train wietsedv/xlm-roberta-base-ft-udpos28-tr
Spaces using wietsedv/xlm-roberta-base-ft-udpos28-tr 2
Evaluation results
- English Test accuracy on Universal Dependencies v2.8self-reported74.400
- Dutch Test accuracy on Universal Dependencies v2.8self-reported73.700
- German Test accuracy on Universal Dependencies v2.8self-reported73.500
- Italian Test accuracy on Universal Dependencies v2.8self-reported73.200
- French Test accuracy on Universal Dependencies v2.8self-reported71.400
- Spanish Test accuracy on Universal Dependencies v2.8self-reported71.100
- Russian Test accuracy on Universal Dependencies v2.8self-reported77.900
- Swedish Test accuracy on Universal Dependencies v2.8self-reported74.500
- Norwegian Test accuracy on Universal Dependencies v2.8self-reported69.200
- Danish Test accuracy on Universal Dependencies v2.8self-reported73.800