XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: German
This model is part of our paper called:
- Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages
Check the Space for more details.
Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-de")
model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-de")
- Downloads last month
- 114
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Dataset used to train wietsedv/xlm-roberta-base-ft-udpos28-de
Spaces using wietsedv/xlm-roberta-base-ft-udpos28-de 2
Evaluation results
- English Test accuracy on Universal Dependencies v2.8self-reported87.000
- Dutch Test accuracy on Universal Dependencies v2.8self-reported89.600
- German Test accuracy on Universal Dependencies v2.8self-reported97.200
- Italian Test accuracy on Universal Dependencies v2.8self-reported85.600
- French Test accuracy on Universal Dependencies v2.8self-reported84.800
- Spanish Test accuracy on Universal Dependencies v2.8self-reported88.400
- Russian Test accuracy on Universal Dependencies v2.8self-reported89.400
- Swedish Test accuracy on Universal Dependencies v2.8self-reported92.300
- Norwegian Test accuracy on Universal Dependencies v2.8self-reported87.700
- Danish Test accuracy on Universal Dependencies v2.8self-reported88.900