remake_base

This model is a fine-tuned version of facebook/wav2vec2-base on the timit_asr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3289
  • Cer: 0.1196

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
5.891 0.8 200 3.4674 0.9746
3.0345 1.61 400 2.3321 0.6943
1.3335 2.41 600 0.6416 0.1832
0.6266 3.21 800 0.4364 0.1458
0.5244 4.02 1000 0.3783 0.1425
0.4244 4.82 1200 0.3599 0.1331
0.3897 5.62 1400 0.3361 0.1323
0.3254 6.43 1600 0.3336 0.1258
0.3007 7.23 1800 0.3346 0.1264
0.2719 8.03 2000 0.3167 0.1192
0.2417 8.84 2200 0.3272 0.1205
0.2253 9.64 2400 0.3289 0.1196

Framework versions

  • Transformers 4.17.0
  • Pytorch 2.4.0
  • Datasets 1.18.3
  • Tokenizers 0.21.0
Downloads last month
12
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Dataset used to train whitebemail/remake_base