20base

This model is a fine-tuned version of facebook/wav2vec2-large-960h on the timit_asr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3563
  • Cer: 0.1174

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
6.1508 0.8 200 3.3750 0.9746
2.7527 1.61 400 1.1544 0.4298
1.1471 2.41 600 0.4961 0.1653
0.6961 3.21 800 0.4192 0.1432
0.6425 4.02 1000 0.4111 0.1366
0.5663 4.82 1200 0.3696 0.1319
0.5265 5.62 1400 0.3766 0.1345
0.4753 6.43 1600 0.3659 0.1350
0.4517 7.23 1800 0.3830 0.1320
0.4312 8.03 2000 0.3396 0.1286
0.4006 8.84 2200 0.3450 0.1234
0.3693 9.64 2400 0.3602 0.1279
0.3627 10.44 2600 0.3347 0.1223
0.3412 11.24 2800 0.3462 0.1271
0.3366 12.05 3000 0.3492 0.1227
0.3097 12.85 3200 0.3459 0.1242
0.2902 13.65 3400 0.3409 0.1189
0.2787 14.46 3600 0.3471 0.1194
0.2664 15.26 3800 0.3597 0.1192
0.2499 16.06 4000 0.3402 0.1173
0.2353 16.87 4200 0.3444 0.1174
0.2282 17.67 4400 0.3497 0.1185
0.2119 18.47 4600 0.3573 0.1192
0.207 19.28 4800 0.3563 0.1174

Framework versions

  • Transformers 4.17.0
  • Pytorch 2.4.0
  • Datasets 1.18.3
  • Tokenizers 0.20.3
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train whitebemail/20base