20add

This model is a fine-tuned version of facebook/wav2vec2-base-960h on the timit_asr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3150
  • Cer: 0.1185

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
5.7412 0.8 200 3.6319 0.8002
2.8636 1.61 400 1.4399 0.4842
0.8873 2.41 600 0.4543 0.1775
0.6085 3.21 800 0.5284 0.1427
0.5604 4.02 1000 0.4079 0.1434
0.5093 4.82 1200 0.7887 0.1367
0.4846 5.62 1400 0.3305 0.1336
0.4458 6.43 1600 0.3543 0.1305
0.4255 7.23 1800 0.3347 0.1326
0.4053 8.03 2000 0.3431 0.1303
0.395 8.84 2200 0.3165 0.1267
0.3749 9.64 2400 0.3284 0.1260
0.3731 10.44 2600 0.3404 0.1256
0.3464 11.24 2800 0.4583 0.1338
0.3347 12.05 3000 0.4427 0.1299
0.3201 12.85 3200 0.4347 0.1291
0.3141 13.65 3400 0.3283 0.1238
0.307 14.46 3600 0.3313 0.1235
0.298 15.26 3800 0.3079 0.1201
0.2858 16.06 4000 0.3074 0.1195
0.2764 16.87 4200 0.3108 0.1196
0.2776 17.67 4400 0.3164 0.1201
0.2632 18.47 4600 0.3187 0.1194
0.2609 19.28 4800 0.3150 0.1185

Framework versions

  • Transformers 4.17.0
  • Pytorch 2.4.0
  • Datasets 1.18.3
  • Tokenizers 0.20.3
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train whitebemail/20add