File size: 47,382 Bytes
27aa048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
""" 
Tiny LLM 模型架构

到处抄,整体还是Llama2的模型架构
"""

import math
import warnings
from threading import Thread
from typing import List, Optional, Tuple, Union
    
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from transformers.generation.utils import GenerationConfig

from .configuration_tinyllm import TinyllmConfig

logger = logging.get_logger(__name__)

def debug(key, value):
    """
    """
    try:
        res = {"var": torch.var(value).item(), "mean": torch.mean(value).item(), 
            "max":torch.max(value).item(), "size": value.size(), "dtype": value.dtype}
    except:
        res = value
    print("debug", key, res, sep="\t")


def report_memory(name):
    """Simple GPU memory report."""
    mega_bytes = 1024.0 * 1024.0
    string = name + ' memory (MB)'
    # 变量分配显存
    string += ' | allocated: {}'.format(
        torch.cuda.memory_allocated() / mega_bytes)
    string += ' | max allocated: {}'.format(
        torch.cuda.max_memory_allocated() / mega_bytes)
    # 缓存和变量分配显存,实际显存还需要+pytorch context
    string += ' | reserved: {}'.format(
        torch.cuda.memory_reserved() / mega_bytes)
    string += ' | max reserved: {}'.format(
        torch.cuda.max_memory_reserved() / mega_bytes)
    try:
        if torch.distributed.get_rank() == 0:
            print("[Rank {}] {}".format(torch.distributed.get_rank(), string),
                flush=True)
            pass
    except:
        pass
    
class TinyllmRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """ TinyllmRMSNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

class TinyllmRotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        """ 旋转位置编码
            - dim (int): 旋转嵌入的维度大小。
            - max_position_embeddings (int): 预计算的最大位置嵌入数,默认为2048。
            - base (int): 用于计算逆频率的基本频率,默认为10000。
        """
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        # 计算逆频率值,并将其注册为模型的缓冲区
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        # 为了支持`torch.jit.trace`功能,立即计算预存储的余弦和正弦缓存
        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
        )

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        """ 预计算的余弦和正弦缓存
        """
        self.max_seq_len_cached = seq_len
        # 创建一个从0到最大序列长度-1的整数张量,与 inv_freq 具有相同的设备和数据类型
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)

        # 计算每个位置与每个维度的频率,形成频谱矩阵
        freqs = torch.outer(t, self.inv_freq)
        
        # 不同于论文中的实现,这里采用了不同的排列方式以获得相同的计算结果
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)

        return (
            self.cos_cached[:seq_len].to(dtype=x.dtype),
            self.sin_cached[:seq_len].to(dtype=x.dtype),
        )

def rotate_half(x):
    """ 旋转输入一半的 hidden dim
    """
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
    """ 在 qk 应用旋转位置编码

    Args:
        q (`torch.Tensor`): q
        k (`torch.Tensor`): k
        cos (`torch.Tensor`): 旋转位置嵌入的余弦部分
        sin (`torch.Tensor`): 旋转位置嵌入的正弦部分
        position_ids (`torch.Tensor`): 与q和k对应位置的标记索引。例如,在处理KV缓存时,可以使用偏移过的位置ID。
        unsqueeze_dim (`int`, *optional*, defaults to 1): 'unsqueeze_dim' 参数指定了沿哪个维度对 cos[position_ids] 
            和 sin[position_ids] 进行扩展,以便它们能够适当地广播到 q 和 k 的维度上。
            例如,注意 cos[position_ids] 和 sin[position_ids] 具有形状 [batch_size, seq_len, head_dim]。
            那么,如果 q 和 k 的形状分别为 [batch_size, heads, seq_len, head_dim],
            则设置 unsqueeze_dim=1 可使 cos[position_ids] 和 sin[position_ids] 可以广播到 q 和 k 的形状上。
            同样地,如果 q 和 k 的形状为 [batch_size, seq_len, heads, head_dim],则应将 unsqueeze_dim 设置为 2
    Returns:
        包含使用旋转位置嵌入变换后的q和k张量的 `tuple(torch.Tensor)`。
    """
    # print("ori cos: ", cos.shape)
    cos = cos[position_ids].unsqueeze(unsqueeze_dim)
    sin = sin[position_ids].unsqueeze(unsqueeze_dim)

    # print("q: ", q.shape)
    # print("cos: ", cos.shape)
    # print("sin: ", sin.shape)
    # print("rotate_half: ", rotate_half(q).shape)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


class TinyllmMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        intermediate = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
        down_proj = self.down_proj(intermediate) 
        return down_proj

def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)

class TinyllmAttention(nn.Module):
    """ 多头注意力
    """

    def __init__(self, config: TinyllmConfig, layer_idx: Optional[int] = None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
                "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )

        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta
        # 因果自回归模式
        self.is_causal = True
        self.attention_dropout = config.attention_dropout

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)

        self.rotary_emb = TinyllmRotaryEmbedding(
            self.head_dim,
            max_position_embeddings=self.max_position_embeddings,
            base=self.rope_theta,
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        # 重新投影,变成多头注意力结构
        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            if self.layer_idx is None:
                raise ValueError(
                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
                    "with a layer index."
                )
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
        # 应用旋转位置编码到 qk 向量
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

        # 如果存在缓存,则更新 kv 
        if past_key_value is not None:
            cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        # repeat k/v heads if n_kv_heads < n_heads
        # 如果 num_key_value_heads 小于 num_heads,则重复key和value向量以匹配头数量
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        # 计算注意力权重
        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
                f" {attn_weights.size()}"
            )

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
                )

            attn_weights = attn_weights + attention_mask

        # softmax归一化注意力权重,并转换至float32类型以防止数值溢出
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
        # 注意力输出
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )
        
        # 还原注意力输出的形状以与后续层对接
        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

        # 通过o_proj层进一步处理注意力输出
        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value
    
class TinyllmSdpaAttention(TinyllmAttention):
    """ 使用 torch.nn.functional.scaled_dot_product_attention 实现的注意力模块。
        该模块继承自 `TinyllmAttention`,因为模块的权重保持不变。唯一的变化在于前向传播过程中适应 SDPA API。
        Scaled Dot Product Attention (SDPA) 
    """

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        # 当设置output_attentions=True时,由于torch.nn.functional.scaled_dot_product_attention不支持直接返回注意力权重
        # 因此暂时降级回用父类的手动实现方式,并发出警告提示用户未来版本的更改要求
        if output_attentions:
            # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
            logger.warning_once(
                "Model is using SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
                'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
            )
            return super().forward(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
            )
        # 获取输入维度信息
        bsz, q_len, _ = hidden_states.size()

        # 对输入进行线性映射得到query、key、value向量
        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        # 将映射后的向量调整为多头注意力所需格式
        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

        # 计算有效的 kv 序列长度(考虑缓存的情况)
        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
        
        # 应用旋转位置嵌入(RoPE)
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)

        # 如果有缓存,更新key和value状态
        if past_key_value is not None:
            cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
                )

        # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
        # Reference: https://github.com/pytorch/pytorch/issues/112577.
        if query_states.device.type == "cuda" and attention_mask is not None:
            query_states = query_states.contiguous()
            key_states = key_states.contiguous()
            value_states = value_states.contiguous()

        # 使用scaled_dot_product_attention进行计算
        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=attention_mask,
            dropout_p=self.attention_dropout if self.training else 0.0,
            # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
            is_causal=self.is_causal and attention_mask is None and q_len > 1,
        )

        # 还原注意力输出的形状
        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.view(bsz, q_len, self.hidden_size)

        # 将注意力输出通过最终的线性层(o_proj层)
        attn_output = self.o_proj(attn_output)

        return attn_output, None, past_key_value    

TINYLLM_ATTENTION_CLASSES = {
    "eager": TinyllmAttention,
    "sdpa": TinyllmSdpaAttention,
}

class TinyllmDecoderLayer(nn.Module):
    def __init__(self, config: TinyllmConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size

        self.self_attn = TINYLLM_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
        self.mlp = TinyllmMLP(config)
        self.input_layernorm = TinyllmRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = TinyllmRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): 输入形状 `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask 形状`(batch, sequence_length)`,
                填充使用0表示
            output_attentions (`bool`, *optional*): 是否返回所有注意力层的注意力张量。
            use_cache (`bool`, *optional*): 如果设置为 `True`,则返回 `past_key_values` 关键值状态,可用于加速解码
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): 缓存的之前kv状态
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


class TinyllmPreTrainedModel(PreTrainedModel):
    config_class = TinyllmConfig
    # 定义了模型内部子模块命名的基础前缀,当加载或保存模型时,这个前缀将用于识别模型主体部分。
    base_model_prefix = "model"
    # 表明该模型支持梯度检查点技术,这是一种内存优化策略,可减少模型训练时所需的显存
    supports_gradient_checkpointing = True
    # 指定了在序列化过程中不应被拆分的模块列表,即在模型保存与加载时保持这些模块作为一个整体。
    _no_split_modules = ["TinyllmDecoderLayer"]
    # 在跨设备数据移动时,指示哪些关键字(key)对应的数据应该跳过设备放置步骤。
    _skip_keys_device_placement = "past_key_values"
    # Scaled Dot Product Attention (SDPA) 
    _supports_sdpa = True
    # 表示模型支持缓存机制,这在自回归模型(如Transformer解码器)中很常见,
    # 用于存储先前计算的结果以加快后续时间步长的计算速度。
    _supports_cache_class = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

class TinyllmModel(TinyllmPreTrainedModel):
    """ 根据配置文件堆叠 TinyllmDecoderLayer 
    Args:
        config: TinyllmConfig
    """

    def __init__(self, config: TinyllmConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [TinyllmDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self._attn_implementation = config._attn_implementation
        self.norm = TinyllmRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,    # 每个输入序列词元在位置嵌入中的位置索引
        past_key_values: Optional[List[torch.FloatTensor]] = None,  # 可用于加速序列解码预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值)
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        past_key_values_length = 0

        if use_cache:
            use_legacy_cache = not isinstance(past_key_values, Cache)
            if use_legacy_cache:
                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
            past_key_values_length = past_key_values.get_usable_length(seq_length)

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            # 生成一个从past_key_values_length到seq_length + past_key_values_length的整数序列
            position_ids = torch.arange(
                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
            )
            # 将生成的序列重塑为形状为(1, seq_length)的张量,然后展平为形状为(-1, seq_length)的张量
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            position_ids = position_ids.view(-1, seq_length).long()

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        # 适应不同注意力机制对注意力掩码的不同要求而设计的
        if self._attn_implementation == "sdpa" and not output_attentions:
            # output_attentions=True can not be supported when using SDPA, and we fall back on
            # the manual implementation that requires a 4D causal mask in all cases.
            attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
                attention_mask,
                (batch_size, seq_length),
                inputs_embeds,
                past_key_values_length,
            )
        else:
            # 4d mask is passed through the layers
            attention_mask = _prepare_4d_causal_attention_mask(
                attention_mask,
                (batch_size, seq_length),
                inputs_embeds,
                past_key_values_length,
            )

        hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        for decoder_layer in self.layers:
            # 1.隐藏状态保存
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            # 2.梯度检查,方便在反向传播时只激活部分层,节省内存资源
            # 3.解码层:
            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )
            # 4.更新隐藏状态
            hidden_states = layer_outputs[0]
            # 5.更新缓存
            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]
            # 6.注意力输出保存
            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = None
        if use_cache:
            next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache

        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )
        
class TinyllmForCausalLM(TinyllmPreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = TinyllmModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)
        logits = logits.float()

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            # 对于自回归模型(如GPT系列),我们需要将模型输出的logits向前移动一位,
            # 这样使得模型预测的是当前时刻 t 的下一个词,而非当前词本身
            shift_logits = logits[..., :-1, :].contiguous()
            # 同时,也需要将真实标签(labels)向前移动一位以与调整后的logits对齐
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-100)

            # 将移位后的 logits 和 labels 扁平化,即将它们展平为一维张量
            # 其中shift_logits变成 (batch_size * sequence_length, vocab_size) 的形式
            # shift_labels变为 (batch_size * sequence_length) 的形式
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            
            # Enable model parallelism
            # 确保模型并行计算时,labels的数据存储位置与logits一致
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
    ):
        """ 准备模型的输入参数
            包括处理input_ids、past_key_values(历史隐藏状态缓存)、attention_mask以及可选的inputs_embeds。
        """
        # Omit tokens covered by past_key_values
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
                cache_length = past_key_values.get_seq_length()
                past_length = past_key_values.seen_tokens
                max_cache_length = past_key_values.get_max_length()
            else:
                cache_length = past_length = past_key_values[0][0].shape[2]
                max_cache_length = None

            # 根据缓存情况裁剪input_ids,只保留未处理的token:
            # # 1. 如果 attention_mask 比 input_ids 更长,说明部分输入已通过缓存传递(如仅传入inputs_embeds)
            if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
                # 取最后未处理的部分
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            # 2. 若已处理的 token 数小于input_ids中的总数,表明input_ids包含全部输入,从中去掉已处理的部分
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            # 3. 否则,认为input_ids中只有待处理的新token

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
            if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]

        # 初始化或处理position_ids
        position_ids = kwargs.get("position_ids", None)
        # 如果attention_mask存在但position_ids不存在,则基于attention_mask动态创建position_ids
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # 根据inputs_embeds和past_key_values的存在与否来决定模型输入
        # 如果提供了inputs_embeds且没有past_key_values(首次生成步骤),则直接使用inputs_embeds作为模型输入
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        """ 用于重新排序缓存中的历史隐藏状态,以适应束搜索(beam search)算法
        """
        reordered_past = ()
        # 遍历每一层的隐藏状态
        for layer_past in past_key_values:
            # 对于每一层的每个隐藏状态向量,执行索引选择操作
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
            )
        return reordered_past
    
    def chat(self, tokenizer, messages: List[dict], stream=False, generation_config: Optional[GenerationConfig]=None):
        pass

class TinyllmForSequenceClassification(TinyllmPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = TinyllmModel(config)
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        # 确定输入序列的有效长度,即从起始到第一个填充符出现之前的所有非填充字符的数量
        if self.config.pad_token_id is None:
            # 无法计算有效长度
            sequence_lengths = -1
        else:
            if input_ids is not None:
                # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
                # 对于给定的输入IDs(input_ids),查找其中等于填充符ID的位置
                # argmax(-1)作用在最后一个维度上,找到每个序列中填充符首次出现的最大索引位置
                # 因为索引是从0开始的,减去1可得到每个序列的有效字符数(不含填充符)
                sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
                # 为了保证与ONNX兼容以及防止越界,当序列尾部被完全填充时,采用模运算来保持有效长度
                # 即使索引超过了输入序列的实际长度,也会自动对应回到有效的范围之内
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
                # 确保计算出的序列长度在与logits相同的设备上,便于后续操作
                sequence_lengths = sequence_lengths.to(logits.device)
            else:
                sequence_lengths = -1

        # 提取实际标签对应的logits
        # 使用arange函数生成一个从0到batch_size-1的索引,并与sequence_lengths结合,
        # 选取每个样本的有效logit
        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            # 若模型配置没有明确指定 problem_type ,则根据num_labels和labels的数据类型推断 problem_type 
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                # 使用均方误差损失函数
                loss_fct = MSELoss()
                # 如果num_labels为1,则直接计算单输出的损失;否则,按列计算所有输出的损失
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                # 单标签分类任务,使用交叉熵损失函数
                loss_fct = CrossEntropyLoss()
                # 将pooled_logits展平为(batch_size * num_labels)的形式,与同样展平后的labels进行比较
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                # 多标签分类任务,使用带Sigmoid激活的二元交叉熵损失函数
                loss_fct = BCEWithLogitsLoss()
                # 直接计算sigmoid之前的logits与标签之间的损失
                loss = loss_fct(pooled_logits, labels)

        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )
     
def print_model_parameters(model):
    """ 打印模型各个层参数
    """
    param_sum = 0
    for name, param in model.named_parameters():
        if param.requires_grad:
            param_sum += param.numel()
            print(f"Layer: {name}, Parameters: {param.numel()}")
    print(f"Total of parameters: {param_sum}") 
    
if __name__ == "__main__":
    # vocav size https://github.com/THUDM/ChatGLM3/issues/634
    args_1480m = TinyllmConfig(
        hidden_size=2048,
        num_hidden_layers=24,
        num_attention_heads=16,
        intermediate_size=5504,
        rope_theta=10000.0,
        max_position_embeddings=1024,
        vocab_size=64798,
    ) 
    
    args_440m = TinyllmConfig(
        hidden_size=1024,
        num_hidden_layers=24,
        num_attention_heads=16,
        intermediate_size=2816,
        rope_theta=10000.0,
        max_position_embeddings=1024,
        vocab_size=64798,
    ) 
    
    args_210m = TinyllmConfig(
        hidden_size=768,
        num_hidden_layers=16,
        num_attention_heads=12,
        intermediate_size=2048,
        rope_theta=10000.0,
        max_position_embeddings=1024,
        vocab_size=64798,
    ) 
    
    args_92m = TinyllmConfig(
        hidden_size=512,
        num_hidden_layers=8,
        num_attention_heads=8,
        intermediate_size=1408,
        rope_theta=10000.0,
        max_position_embeddings=1024,
        vocab_size=64798,
    )
    
    args_42m = TinyllmConfig(
        hidden_size=288,
        num_hidden_layers=6,
        num_attention_heads=6,
        intermediate_size=768,
        rope_theta=10000.0,
        max_position_embeddings=512,
        vocab_size=64798,
    )  
    
    args_16m = TinyllmConfig(
        hidden_size=120,
        num_hidden_layers=6,
        num_attention_heads=6,
        intermediate_size=384,
        rope_theta=10000.0,
        max_position_embeddings=512,
        vocab_size=64798,
    )      
    
    model = TinyllmForCausalLM(args_210m)
    
    inputs_ids = torch.tensor([[1,2,4],[4,3,2]])
    labels = torch.tensor([[1,4,3],[2,3,1]])
    print(inputs_ids.shape)
    outputs = model(input_ids=inputs_ids, labels=labels)
    print(outputs.logits)
    print(outputs.loss)
    
    # print_model_parameters(model)