File size: 1,936 Bytes
9c674c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5dc2e3
9c674c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29c63c5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
language:
- zh
pipeline_tag: text-generation
tags:
- chat
---


## Tiny LLM 92M SFT

### 简介

本项目[wdndev/tiny-llm-zh (github.com)](https://github.com/wdndev/tiny-llm-zh)旨在构建一个小参数量的中文语言大模型,用于快速入门学习大模型相关知识。

模型架构:整体模型架构采用开源通用架构,包括:RMSNorm,RoPE,MHA等

实现细节:实现大模型两阶段训练及后续人类对齐,即:预训练(PTM) -> 指令微调(SFT) -> 人类对齐(RLHF, DPO) -> 测评。

注意:因资源限制,本项目的第一要务是走通大模型整个流程,而不是调教比较好的效果,故评测结果分数较低,部分生成错误。


### 模型细节

大约在9B的中文预料中训练,主要包含百科内容,模型架构采用开源通用架构,包括:RMSNorm,RoPE,MHA等。

### 环境

只需要安装 `transformers` 即可运行

### 快速开始

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "wdndev/tiny_llm_sft_92m"

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True)

sys_text = "你是由wdndev开发的个人助手。"
# user_text = "中国的首都是哪儿?"
# user_text = "你叫什么名字?"
user_text = "介绍一下中国"
input_txt = "\n".join(["<|system|>", sys_text.strip(), 
                        "<|user|>", user_text.strip(), 
                        "<|assistant|>"]).strip() + "\n"

model_inputs = tokenizer(input_txt, return_tensors="pt").to(model.device)
generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=200)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```