File size: 1,936 Bytes
9c674c5 e5dc2e3 9c674c5 29c63c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
language:
- zh
pipeline_tag: text-generation
tags:
- chat
---
## Tiny LLM 92M SFT
### 简介
本项目[wdndev/tiny-llm-zh (github.com)](https://github.com/wdndev/tiny-llm-zh)旨在构建一个小参数量的中文语言大模型,用于快速入门学习大模型相关知识。
模型架构:整体模型架构采用开源通用架构,包括:RMSNorm,RoPE,MHA等
实现细节:实现大模型两阶段训练及后续人类对齐,即:预训练(PTM) -> 指令微调(SFT) -> 人类对齐(RLHF, DPO) -> 测评。
注意:因资源限制,本项目的第一要务是走通大模型整个流程,而不是调教比较好的效果,故评测结果分数较低,部分生成错误。
### 模型细节
大约在9B的中文预料中训练,主要包含百科内容,模型架构采用开源通用架构,包括:RMSNorm,RoPE,MHA等。
### 环境
只需要安装 `transformers` 即可运行
### 快速开始
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "wdndev/tiny_llm_sft_92m"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True)
sys_text = "你是由wdndev开发的个人助手。"
# user_text = "中国的首都是哪儿?"
# user_text = "你叫什么名字?"
user_text = "介绍一下中国"
input_txt = "\n".join(["<|system|>", sys_text.strip(),
"<|user|>", user_text.strip(),
"<|assistant|>"]).strip() + "\n"
model_inputs = tokenizer(input_txt, return_tensors="pt").to(model.device)
generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=200)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
``` |