GigaAM-v2-CTC π€ Hugging Face transformers
- original git https://github.com/salute-developers/GigaAM
Russian ASR model GigaAM-v2-RNNT.
Model info
This is an original GigaAM-v2-RNNT with transformers
library interface.
File gigaam_transformers.py
contains model, feature extractor and tokenizer classes with usual transformers methods. Model can be initialized with transformers auto classes (see an example below).
Installation
my lib versions:
torch
2.5.1torchaudio
2.5.1transformers
4.49.0
Usage
Usage is same as other transformers
ASR models.
from transformers import AutoModel, AutoProcessor
import torch
import torchaudio
# load audio
wav, sr = torchaudio.load("audio.wav")
# resample if necessary
wav = torchaudio.functional.resample(wav, sr, 16000)
# load model and processor
processor = AutoProcessor.from_pretrained("waveletdeboshir/gigaam-rnnt", trust_remote_code=True)
model = AutoModel.from_pretrained("waveletdeboshir/gigaam-rnnt", trust_remote_code=True)
model.eval()
input_features = processor(wav[0], sampling_rate=16000, return_tensors="pt")
# greedy prediction
with torch.no_grad():
pred_ids = model.generate(**input_features)
# decode token ids to text
transcription = processor.batch_decode(pred_ids)[0]
Fine-tune
- Downloads last month
- 28
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
HF Inference deployability: The model has no library tag.