metadata
license: other
library_name: transformers
datasets:
- HuggingFaceH4/ultrachat_200k
base_model: google/gemma-2b
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
model-index:
- name: gemma-2b-zephyr-sft
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 49.74
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=wandb/gemma-2b-zephyr-sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 72.38
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=wandb/gemma-2b-zephyr-sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 41.37
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=wandb/gemma-2b-zephyr-sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 34.42
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=wandb/gemma-2b-zephyr-sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.93
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=wandb/gemma-2b-zephyr-sft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 18.27
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=wandb/gemma-2b-zephyr-sft
name: Open LLM Leaderboard
Gemma 2B Zephyr SFT
The Zephyr SFT recipe applied on top of Gemma 2B
Model description
- Model type: A 2.5B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- Language(s) (NLP): Primarily English
- Finetuned from model: google/gemma-7b
Recipe
We trained using the alignment handbook recipe and logging to W&B
Visit the W&B workspace here
License
This model has the same license as the original Gemma model collection
Compute provided by Lambda Labs - 8xA100 80GB node
- Around 2 hours to train
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 47.18 |
AI2 Reasoning Challenge (25-Shot) | 49.74 |
HellaSwag (10-Shot) | 72.38 |
MMLU (5-Shot) | 41.37 |
TruthfulQA (0-shot) | 34.42 |
Winogrande (5-shot) | 66.93 |
GSM8k (5-shot) | 18.27 |