whisper-large-v2-ec
This model is a fine-tuned version of openai/whisper-large-v2 on the wanasash/enwaucymraeg default dataset. It achieves the following results on the evaluation set:
- Loss: 0.5119
- Wer: 0.2167
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0112 | 13.6054 | 1000 | 0.3912 | 0.2395 |
0.0004 | 27.2109 | 2000 | 0.4532 | 0.2245 |
0.0002 | 40.8163 | 3000 | 0.4882 | 0.2175 |
0.0001 | 54.4218 | 4000 | 0.5051 | 0.2148 |
0.0001 | 68.0272 | 5000 | 0.5119 | 0.2167 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 6
Model tree for wanasash/whisper-large-v2-ec
Base model
openai/whisper-large-v2Dataset used to train wanasash/whisper-large-v2-ec
Evaluation results
- Wer on wanasash/enwaucymraeg defaultself-reported0.217