YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

BERT-base tuned for Squadv1.1 is pruned with movement pruning algorithm in hybrid fashion, i.e. 32x32 block for self-attention layers, per-dimension grain size for ffn layers.

  eval_exact_match = 78.5241
  eval_f1          = 86.4138
  eval_samples     =   10784

This model is a replication of block pruning paper with its open-sourced codebase (forked and modified). To reproduce this model, pls follow documentation here until step 2.

Eval

The model can be evaluated out-of-the-box with HF QA example. Note that only pruned self-attention heads are discarded where pruned ffn dimension are sparsified instead of removal. Verified in v4.13.0, v4.9.1.

export CUDA_VISIBLE_DEVICES=0

OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid
WORKDIR=transformers/examples/pytorch/question-answering
cd $WORKDIR
mkdir $OUTDIR

nohup python run_qa.py  \
    --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid  \
    --dataset_name squad  \
    --do_eval  \
    --per_device_eval_batch_size 16  \
    --max_seq_length 384  \
    --doc_stride 128  \
    --overwrite_output_dir \
    --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log &

If the intent is to observe inference acceleration, the pruned structure in the model must be "cropped"/discarded. Follow the custom setup below.

# OpenVINO/NNCF
git clone https://github.com/vuiseng9/nncf && cd nncf
git checkout tld-poc
git reset --hard 1dec7afe7a4b567c059fcf287ea2c234980fded2
python setup.py develop
pip install -r examples/torch/requirements.txt

# Huggingface nn_pruning
git clone https://github.com/vuiseng9/nn_pruning && cd nn_pruning
git checkout reproduce-evaluation
git reset --hard 2d4e196d694c465e43e5fbce6c3836d0a60e1446
pip install -e ".[dev]"

# Huggingface Transformers
git clone https://github.com/vuiseng9/transformers && cd transformers
git checkout tld-poc
git reset --hard 10a1e29d84484e48fd106f58957d9ffc89dc43c5
pip install -e .
head -n 1 examples/pytorch/question-answering/requirements.txt | xargs -i pip install {}

Add --optimize_model_before_eval during evaluation.

export CUDA_VISIBLE_DEVICES=0

OUTDIR=eval-bert-base-squadv1-block-pruning-hybrid-cropped
WORKDIR=transformers/examples/pytorch/question-answering
cd $WORKDIR
mkdir $OUTDIR

nohup python run_qa.py  \
    --model_name_or_path vuiseng9/bert-base-squadv1-block-pruning-hybrid  \
    --dataset_name squad  \
    --optimize_model_before_eval \
    --do_eval  \
    --per_device_eval_batch_size 128  \
    --max_seq_length 384  \
    --doc_stride 128  \
    --overwrite_output_dir \
    --output_dir $OUTDIR 2>&1 | tee $OUTDIR/run.log &
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.