This is a part of the MTEB test.

# !pip install tensorflow_text 

import tensorflow_hub as hub
from tensorflow_text import SentencepieceTokenizer
import tensorflow as tf

embedder=hub.load("https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3")

class USE():
    def encode(self, sentences, batch_size=32, **kwargs):
        embeddings = []
        for i in range(0, len(sentences), batch_size):
            batch_sentences = sentences[i:i+batch_size]
            batch_embeddings = embedder(batch_sentences)
            embeddings.extend(batch_embeddings)
        return embeddings


model = USE()
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Spaces using vprelovac/universal-sentence-encoder-large-5 2

Evaluation results