petro-daemon / README.md
volvoDon's picture
Update README.md
093b1d3
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_keras_callback
model-index:
  - name: volvoDon/petro-daemon
    results: []

volvoDon/petro-daemon

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on a DataSet of petrologic cross sections. It achieves the following results on the evaluation set:

  • Train Loss: 0.8890
  • Validation Loss: 1.1803
  • Train Accuracy: 0.6
  • Epoch: 19

Model description

More information needed

Intended uses & limitations

Currently it is just a proof of concept and does a great job identifiying Olivine It currently is not ready for a production enviroment but the results are promising, with an improved dataset I'm confident better results could be acheived.

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 300, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
1.6519 1.7095 0.2 0
1.5905 1.6747 0.2 1
1.5690 1.6342 0.2 2
1.5170 1.5931 0.2 3
1.4764 1.5528 0.6 4
1.3835 1.5079 0.6 5
1.3420 1.4717 0.6 6
1.3171 1.4232 0.6 7
1.2897 1.3905 0.6 8
1.2702 1.3794 0.6 9
1.2023 1.3351 0.6 10
1.1480 1.3384 0.6 11
1.1434 1.3419 0.6 12
1.0499 1.3226 0.6 13
1.0672 1.2647 0.6 14
1.0526 1.1533 0.6 15
1.0184 1.1546 0.6 16
0.9505 1.2491 0.6 17
0.9578 1.2809 0.4 18
0.8890 1.1803 0.6 19

Framework versions

  • Transformers 4.32.1
  • TensorFlow 2.12.0
  • Datasets 2.14.4
  • Tokenizers 0.13.3