File size: 2,634 Bytes
9c1cd74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07bd33a
 
 
 
56a03e0
07bd33a
 
9c1cd74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e13577d
9c1cd74
 
 
 
 
 
e13577d
56a03e0
07bd33a
9c1cd74
 
 
 
 
 
b9c369a
9c1cd74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- generated_from_keras_callback
model-index:
- name: vnktrmnb/bert-base-multilingual-cased-finetuned-TyDiQA-GoldP_Te
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# vnktrmnb/bert-base-multilingual-cased-finetuned-TyDiQA-GoldP_Te

This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3152
- Train End Logits Accuracy: 0.9004
- Train Start Logits Accuracy: 0.9263
- Validation Loss: 0.4931
- Validation End Logits Accuracy: 0.8686
- Validation Start Logits Accuracy: 0.9162
- Epoch: 2

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1359, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
| 0.7083     | 0.7903                    | 0.8387                      | 0.4992          | 0.8505                         | 0.8892                           | 0     |
| 0.4552     | 0.8584                    | 0.8957                      | 0.4905          | 0.8686                         | 0.8995                           | 1     |
| 0.3152     | 0.9004                    | 0.9263                      | 0.4931          | 0.8686                         | 0.9162                           | 2     |


### Framework versions

- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3