File size: 1,450 Bytes
46a6322
 
 
 
 
 
 
 
 
 
 
cdb8786
 
 
 
 
 
 
 
 
 
 
 
 
46a6322
 
 
 
 
 
 
 
 
9a2fcc2
46a6322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
license: bigscience-bloom-rail-1.0
language:
- vi
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- bloom
- causal-lm
- pytorch
model-index:
- name: vlsp-2023-vllm/hoa-7b
  results:
  - task:
      name: Word prediction
      type: text-generation
    dataset:
      type: vlsp-2023-vllm/lambada
      name: ViLambada
      split: test
    metrics:
    - type: Perplexity
      value: 8.606673731963474
---

# Hoa 7B (Bloom architecture)

Hoa is an autoregressive Large Language Model (LLM), based on Bloom's model architecture. 
Hoa was trained on part of the Common Crawl dataset in Vietnamese and English.

Details will be available soon.

To contact us, mail to: leanhcuong@gmail.com (Lê Anh Cường) | hieunguyen1053@outlook.com (Hiếu) | nv.cuong@int2.vn (Nguyễn Việt Cường)

### How to use 
```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("vlsp-2023-vllm/hoa-7b")
model = AutoModelForCausalLM.from_pretrained("vlsp-2023-vllm/hoa-7b", low_cpu_mem_usage=True)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
model.to(device)

prompt = "Địa chỉ trường Đại học Tôn Đức Thắng nằm ở số"
input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(device)

gen_tokens = model.generate(input_ids, max_length=max_length, repetition_penalty=1.1)

print(tokenizer.batch_decode(gen_tokens)[0])
```