File size: 2,043 Bytes
6aaffb1 5c6f53f db657d7 6aaffb1 db657d7 5c6f53f db657d7 2b591a8 db657d7 2b591a8 db657d7 5c6f53f db657d7 5c6f53f db657d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
base_model: vikp/line_detector_2
tags:
- generated_from_trainer
model-index:
- name: line_detector_math
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# line_detector_math
This model is a fine-tuned version of [vikp/line_detector_2](https://huggingface.co/vikp/line_detector_2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1602
- Heatmap Mean Iou: 92.4902
- Heatmap Box Count: 40.9407
- Heatmap Correct Box Count: 41.4774
- Affinity Mean Iou: 23.9998
- Affinity Box Count: 218.5248
- Affinity Correct Box Count: 121.3200
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Heatmap Mean Iou | Heatmap Box Count | Heatmap Correct Box Count | Affinity Mean Iou | Affinity Box Count | Affinity Correct Box Count |
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-----------------:|:-------------------------:|:-----------------:|:------------------:|:--------------------------:|
| 0.1625 | 2.72 | 1000 | 0.1602 | 92.4902 | 40.9407 | 41.4774 | 23.9998 | 218.5248 | 121.3200 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|