BART_CNNDM_ORIGIN

This model is a fine-tuned version of facebook/bart-large-cnn on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6921
  • Rouge1: 0.3423
  • Rouge2: 0.144
  • Rougel: 0.2434
  • Rougelsum: 0.3142
  • Gen Len: 73.4636
  • Precision: 0.8695
  • Recall: 0.8927
  • F1: 0.8808

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Precision Recall F1
1.2137 1.0 625 1.6451 0.3343 0.1359 0.2346 0.3043 72.7655 0.8678 0.891 0.8791
1.054 2.0 1250 1.6921 0.3423 0.144 0.2434 0.3142 73.4636 0.8695 0.8927 0.8808

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.15.0
Downloads last month
3
Safetensors
Model size
406M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for vickt/BART_CNNDM_ORIGIN

Finetuned
(327)
this model