|
--- |
|
language: multilingual |
|
license: mit |
|
tags: |
|
- zero-shot-classification |
|
- nli |
|
- pytorch |
|
datasets: |
|
- mnli |
|
- xnli |
|
- facebook/anli |
|
pipeline_tag: zero-shot-classification |
|
widget: |
|
- text: De pugna erat fantastic. Nam Crixo decem quam dilexit et praeciderunt caput |
|
aemulus. |
|
candidate_labels: violent, peaceful |
|
- text: La película empezaba bien pero terminó siendo un desastre. |
|
candidate_labels: positivo, negativo, neutral |
|
- text: La película empezó siendo un desastre pero en general fue bien. |
|
candidate_labels: positivo, negativo, neutral |
|
- text: ¿A quién vas a votar en 2020? |
|
candidate_labels: Europa, elecciones, política, ciencia, deportes |
|
--- |
|
|
|
### XLM-RoBERTa-large-XNLI-ANLI |
|
|
|
XLM-RoBERTa-large model finetunned over several NLI datasets, ready to use for zero-shot classification. |
|
|
|
Here are the accuracies for several test datasets: |
|
|
|
| | XNLI-es | XNLI-fr | ANLI-R1 | ANLI-R2 | ANLI-R3 | |
|
|-----------------------------|---------|---------|---------|---------|---------| |
|
| xlm-roberta-large-xnli-anli | 93.7% | 93.2% | 68.5% | 53.6% | 49.0% | |
|
|
|
The model can be loaded with the zero-shot-classification pipeline like so: |
|
``` |
|
from transformers import pipeline |
|
classifier = pipeline("zero-shot-classification", |
|
model="vicgalle/xlm-roberta-large-xnli-anli") |
|
``` |
|
You can then use this pipeline to classify sequences into any of the class names you specify: |
|
``` |
|
sequence_to_classify = "Algún día iré a ver el mundo" |
|
candidate_labels = ['viaje', 'cocina', 'danza'] |
|
classifier(sequence_to_classify, candidate_labels) |
|
#{'sequence': 'Algún día iré a ver el mundo', |
|
#'labels': ['viaje', 'danza', 'cocina'], |
|
#'scores': [0.9991760849952698, 0.0004178212257102132, 0.0004059972707182169]} |
|
``` |