roberta-base-emotion-prediction-phr

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3301
  • Accuracy: 0.2814
  • Micro Precision: 0.7422
  • Micro Recall: 0.6510
  • Micro F1: 0.6945
  • Micro Roc Auc: 0.7940

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Micro Precision Micro Recall Micro F1 Micro Roc Auc
0.4952 0.12 100 0.4515 0.1574 0.5861 0.3505 0.4386 0.6404
0.4152 0.23 200 0.3839 0.2041 0.7102 0.4593 0.5578 0.7033
0.3878 0.35 300 0.3625 0.2341 0.7384 0.5198 0.6101 0.7340
0.3764 0.47 400 0.3506 0.2412 0.7666 0.5092 0.6119 0.7328
0.372 0.58 500 0.3450 0.2375 0.7686 0.5251 0.6239 0.7403
0.3588 0.7 600 0.3464 0.2249 0.7804 0.4964 0.6068 0.7286
0.3383 0.82 700 0.3471 0.2470 0.7503 0.5578 0.6398 0.7528
0.3489 0.94 800 0.3284 0.2620 0.7702 0.5682 0.6539 0.7603
0.3287 1.05 900 0.3214 0.2820 0.7707 0.5936 0.6706 0.7720
0.3158 1.17 1000 0.3352 0.2657 0.7580 0.5814 0.6580 0.7646
0.3247 1.29 1100 0.3219 0.2811 0.7696 0.6031 0.6763 0.7762
0.3159 1.4 1200 0.3237 0.2688 0.7479 0.6138 0.6743 0.7778
0.3207 1.52 1300 0.3217 0.2461 0.7676 0.5767 0.6586 0.7638
0.3087 1.64 1400 0.3253 0.2424 0.7484 0.5883 0.6587 0.7663
0.3057 1.75 1500 0.3174 0.2728 0.7587 0.6116 0.6773 0.7785
0.3099 1.87 1600 0.3150 0.2774 0.7683 0.6001 0.6738 0.7746
0.3006 1.99 1700 0.3176 0.2633 0.7636 0.5881 0.6645 0.7685
0.285 2.11 1800 0.3177 0.2722 0.7363 0.6484 0.6896 0.7915
0.2886 2.22 1900 0.3156 0.2768 0.7734 0.5935 0.6716 0.7723
0.2785 2.34 2000 0.3101 0.2808 0.7692 0.6151 0.6836 0.7816
0.2801 2.46 2100 0.3121 0.2728 0.7739 0.5956 0.6732 0.7734
0.2876 2.57 2200 0.3166 0.2777 0.7577 0.6157 0.6794 0.7802
0.2769 2.69 2300 0.3143 0.2881 0.7691 0.6124 0.6819 0.7803
0.2755 2.81 2400 0.3133 0.2792 0.7577 0.6263 0.6857 0.7850
0.2815 2.92 2500 0.3197 0.2716 0.7406 0.6466 0.6904 0.7914
0.2671 3.04 2600 0.3133 0.2857 0.7549 0.6438 0.6949 0.7925
0.2431 3.16 2700 0.3225 0.2722 0.7515 0.6320 0.6866 0.7866
0.2512 3.27 2800 0.3221 0.2743 0.7616 0.6106 0.6778 0.7784
0.2574 3.39 2900 0.3191 0.2737 0.7561 0.6214 0.6822 0.7825
0.2527 3.51 3000 0.3207 0.2666 0.7443 0.6315 0.6833 0.7852
0.2615 3.63 3100 0.3170 0.2670 0.7443 0.6471 0.6923 0.7923
0.2583 3.74 3200 0.3122 0.2685 0.7729 0.6068 0.6799 0.7783
0.2543 3.86 3300 0.3175 0.2709 0.7492 0.6432 0.6921 0.7913
0.2546 3.98 3400 0.3164 0.2752 0.7661 0.6186 0.6845 0.7828
0.2274 4.09 3500 0.3172 0.2759 0.7437 0.6426 0.6895 0.7902
0.2328 4.21 3600 0.3214 0.2737 0.7548 0.6297 0.6866 0.7861
0.2354 4.33 3700 0.3192 0.2792 0.7546 0.6310 0.6872 0.7866
0.2238 4.44 3800 0.3199 0.2709 0.7453 0.6444 0.6912 0.7912
0.2376 4.56 3900 0.3176 0.2734 0.7599 0.6247 0.6857 0.7846
0.2344 4.68 4000 0.3189 0.2639 0.7437 0.6390 0.6874 0.7885
0.2222 4.8 4100 0.3222 0.2636 0.7436 0.6409 0.6884 0.7894
0.232 4.91 4200 0.3227 0.2725 0.7472 0.6426 0.6910 0.7907
0.2367 5.03 4300 0.3243 0.2670 0.7463 0.6339 0.6855 0.7866
0.2154 5.15 4400 0.3257 0.2593 0.7366 0.6513 0.6913 0.7929
0.2089 5.26 4500 0.3261 0.2700 0.7416 0.6453 0.6901 0.7910
0.2081 5.38 4600 0.3269 0.2731 0.7602 0.6133 0.6789 0.7794
0.2116 5.5 4700 0.3308 0.2593 0.7229 0.6687 0.6947 0.7983
0.2128 5.61 4800 0.3263 0.2660 0.7422 0.6432 0.6891 0.7902
0.2059 5.73 4900 0.3295 0.2728 0.7356 0.6550 0.6929 0.7944
0.2103 5.85 5000 0.3301 0.2814 0.7442 0.6510 0.6945 0.7940
0.2151 5.96 5100 0.3300 0.2541 0.7221 0.6598 0.6896 0.7942
0.1954 6.08 5200 0.3325 0.2765 0.7476 0.6381 0.6885 0.7887
0.2028 6.2 5300 0.3316 0.2559 0.7364 0.6400 0.6848 0.7878
0.1911 6.32 5400 0.3332 0.2553 0.7370 0.6386 0.6843 0.7873
0.2015 6.43 5500 0.3349 0.2645 0.7308 0.6538 0.6902 0.7931
0.1901 6.55 5600 0.3389 0.2587 0.7197 0.6682 0.6930 0.7975
0.197 6.67 5700 0.3349 0.2728 0.7400 0.6424 0.6878 0.7895
0.1907 6.78 5800 0.3354 0.2627 0.7454 0.6349 0.6857 0.7870
0.1853 6.9 5900 0.3420 0.2657 0.7356 0.6513 0.6909 0.7927
0.1841 7.02 6000 0.3399 0.2584 0.7308 0.6554 0.6910 0.7937
0.1739 7.13 6100 0.3409 0.2620 0.7364 0.6446 0.6874 0.7898
0.1768 7.25 6200 0.3417 0.2593 0.7314 0.6474 0.6868 0.7902
0.1762 7.37 6300 0.3384 0.2654 0.7398 0.6373 0.6847 0.7871
0.177 7.49 6400 0.3448 0.2541 0.7237 0.6547 0.6875 0.7922
0.1787 7.6 6500 0.3422 0.2513 0.7317 0.6425 0.6842 0.7881
0.1793 7.72 6600 0.3452 0.2611 0.7231 0.6582 0.6891 0.7936
0.1772 7.84 6700 0.3470 0.2587 0.7193 0.6618 0.6894 0.7946
0.1799 7.95 6800 0.3459 0.2547 0.7238 0.6494 0.6846 0.7898
0.1726 8.07 6900 0.3477 0.2507 0.7259 0.6419 0.6813 0.7869
0.1672 8.19 7000 0.3489 0.2492 0.7215 0.6499 0.6838 0.7897
0.1664 8.3 7100 0.3474 0.2498 0.7197 0.6491 0.6826 0.7890
0.1712 8.42 7200 0.3477 0.2516 0.7309 0.6404 0.6827 0.7870
0.166 8.54 7300 0.3487 0.2553 0.7209 0.6547 0.6862 0.7917
0.1706 8.65 7400 0.3487 0.2538 0.7239 0.6518 0.6860 0.7909
0.1674 8.77 7500 0.3506 0.2538 0.7216 0.6541 0.6862 0.7916
0.1655 8.89 7600 0.3476 0.2553 0.7283 0.6465 0.6849 0.7893
0.1609 9.01 7700 0.3498 0.2495 0.7273 0.6443 0.6833 0.7882
0.1647 9.12 7800 0.3507 0.2522 0.7255 0.6423 0.6814 0.7870
0.1531 9.24 7900 0.3503 0.2522 0.7292 0.6426 0.6832 0.7878
0.1577 9.36 8000 0.3524 0.2528 0.7212 0.6569 0.6875 0.7927
0.1592 9.47 8100 0.3517 0.2519 0.7186 0.6536 0.6845 0.7908
0.1615 9.59 8200 0.3514 0.2510 0.7183 0.6529 0.6841 0.7905
0.1529 9.71 8300 0.3515 0.2516 0.7221 0.6489 0.6835 0.7893
0.1607 9.82 8400 0.3520 0.2528 0.7212 0.6499 0.6837 0.7896
0.1506 9.94 8500 0.3524 0.2522 0.7220 0.6522 0.6853 0.7908

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
33
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vibhorag101/roberta-base-emotion-prediction-phr

Finetuned
(1380)
this model

Datasets used to train vibhorag101/roberta-base-emotion-prediction-phr