veluchs's picture
update model card README.md
f521e9e
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results: []

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7713
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.9891 0.99 56 1.9587 0.4
1.5271 2.0 113 1.4658 0.56
1.074 2.99 169 0.9198 0.79
0.8036 4.0 226 0.9191 0.7
0.5017 4.99 282 0.7299 0.8
0.3405 6.0 339 0.6682 0.8
0.2178 6.99 395 0.6877 0.82
0.116 8.0 452 0.6092 0.83
0.0616 8.99 508 0.6579 0.85
0.0229 10.0 565 0.8793 0.8
0.0128 10.99 621 0.6722 0.87
0.0094 12.0 678 0.7586 0.87
0.0073 12.99 734 0.7636 0.87
0.007 14.0 791 0.7728 0.87
0.0073 14.87 840 0.7713 0.87

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.11.0+cu102
  • Datasets 2.4.0
  • Tokenizers 0.12.1