update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- marsyas/gtzan
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: distilhubert-finetuned-gtzan
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# distilhubert-finetuned-gtzan
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.7713
|
22 |
+
- Accuracy: 0.87
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.0001
|
42 |
+
- train_batch_size: 8
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 2
|
46 |
+
- total_train_batch_size: 16
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 15
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
56 |
+
| 1.9891 | 0.99 | 56 | 1.9587 | 0.4 |
|
57 |
+
| 1.5271 | 2.0 | 113 | 1.4658 | 0.56 |
|
58 |
+
| 1.074 | 2.99 | 169 | 0.9198 | 0.79 |
|
59 |
+
| 0.8036 | 4.0 | 226 | 0.9191 | 0.7 |
|
60 |
+
| 0.5017 | 4.99 | 282 | 0.7299 | 0.8 |
|
61 |
+
| 0.3405 | 6.0 | 339 | 0.6682 | 0.8 |
|
62 |
+
| 0.2178 | 6.99 | 395 | 0.6877 | 0.82 |
|
63 |
+
| 0.116 | 8.0 | 452 | 0.6092 | 0.83 |
|
64 |
+
| 0.0616 | 8.99 | 508 | 0.6579 | 0.85 |
|
65 |
+
| 0.0229 | 10.0 | 565 | 0.8793 | 0.8 |
|
66 |
+
| 0.0128 | 10.99 | 621 | 0.6722 | 0.87 |
|
67 |
+
| 0.0094 | 12.0 | 678 | 0.7586 | 0.87 |
|
68 |
+
| 0.0073 | 12.99 | 734 | 0.7636 | 0.87 |
|
69 |
+
| 0.007 | 14.0 | 791 | 0.7728 | 0.87 |
|
70 |
+
| 0.0073 | 14.87 | 840 | 0.7713 | 0.87 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.30.2
|
76 |
+
- Pytorch 1.11.0+cu102
|
77 |
+
- Datasets 2.4.0
|
78 |
+
- Tokenizers 0.12.1
|