veluchs commited on
Commit
f521e9e
1 Parent(s): c1c531f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - marsyas/gtzan
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: distilhubert-finetuned-gtzan
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # distilhubert-finetuned-gtzan
18
+
19
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.7713
22
+ - Accuracy: 0.87
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 0.0001
42
+ - train_batch_size: 8
43
+ - eval_batch_size: 8
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 2
46
+ - total_train_batch_size: 16
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_ratio: 0.1
50
+ - num_epochs: 15
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
56
+ | 1.9891 | 0.99 | 56 | 1.9587 | 0.4 |
57
+ | 1.5271 | 2.0 | 113 | 1.4658 | 0.56 |
58
+ | 1.074 | 2.99 | 169 | 0.9198 | 0.79 |
59
+ | 0.8036 | 4.0 | 226 | 0.9191 | 0.7 |
60
+ | 0.5017 | 4.99 | 282 | 0.7299 | 0.8 |
61
+ | 0.3405 | 6.0 | 339 | 0.6682 | 0.8 |
62
+ | 0.2178 | 6.99 | 395 | 0.6877 | 0.82 |
63
+ | 0.116 | 8.0 | 452 | 0.6092 | 0.83 |
64
+ | 0.0616 | 8.99 | 508 | 0.6579 | 0.85 |
65
+ | 0.0229 | 10.0 | 565 | 0.8793 | 0.8 |
66
+ | 0.0128 | 10.99 | 621 | 0.6722 | 0.87 |
67
+ | 0.0094 | 12.0 | 678 | 0.7586 | 0.87 |
68
+ | 0.0073 | 12.99 | 734 | 0.7636 | 0.87 |
69
+ | 0.007 | 14.0 | 791 | 0.7728 | 0.87 |
70
+ | 0.0073 | 14.87 | 840 | 0.7713 | 0.87 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.30.2
76
+ - Pytorch 1.11.0+cu102
77
+ - Datasets 2.4.0
78
+ - Tokenizers 0.12.1