File size: 2,945 Bytes
939366b
 
 
 
 
 
a4c41dd
 
d96d976
 
 
939366b
 
 
 
 
 
 
 
 
 
 
 
43e7ad3
 
 
 
 
 
 
 
 
 
 
939366b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43e7ad3
f3641f2
 
939366b
 
43e7ad3
d96d976
6da9dd9
939366b
a4c41dd
 
d96d976
 
43e7ad3
 
 
 
 
a4c41dd
 
939366b
 
 
f3641f2
 
939366b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
library_name: transformers
license: apache-2.0
base_model: m3hrdadfi/hubert-base-persian-speech-emotion-recognition
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: Hubert-fine-tuned-persian
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Hubert-fine-tuned-persian

This model is a fine-tuned version of [m3hrdadfi/hubert-base-persian-speech-emotion-recognition](https://huggingface.co/m3hrdadfi/hubert-base-persian-speech-emotion-recognition) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7102
- Accuracy: 0.7585
- Precision: 0.7838
- Recall: 0.6493
- F1: 0.7102
- Precision Neutral: 0.7432
- Recall Neutral: 0.85
- F1 Neutral: 0.7930
- Precision Anger: 0.7838
- Recall Anger: 0.6493
- F1 Anger: 0.7102

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Precision Neutral | Recall Neutral | F1 Neutral | Precision Anger | Recall Anger | F1 Anger |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|
| 0.6917        | 1.0   | 294  | 0.6704          | 0.5578   | 0.5078    | 0.9701 | 0.6667 | 0.8947            | 0.2125         | 0.3434     | 0.5078          | 0.9701       | 0.6667   |
| 0.6453        | 2.0   | 588  | 0.6077          | 0.7007   | 0.8194    | 0.4403 | 0.5728 | 0.6622            | 0.9187         | 0.7696     | 0.8194          | 0.4403       | 0.5728   |
| 0.5272        | 3.0   | 882  | 0.7842          | 0.6633   | 0.9487    | 0.2761 | 0.4277 | 0.6196            | 0.9875         | 0.7614     | 0.9487          | 0.2761       | 0.4277   |
| 0.4118        | 4.0   | 1176 | 0.6566          | 0.7449   | 0.736     | 0.6866 | 0.7104 | 0.7515            | 0.7937         | 0.7720     | 0.736           | 0.6866       | 0.7104   |
| 0.4956        | 5.0   | 1470 | 0.7102          | 0.7585   | 0.7838    | 0.6493 | 0.7102 | 0.7432            | 0.85           | 0.7930     | 0.7838          | 0.6493       | 0.7102   |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 2.18.0
- Tokenizers 0.21.0