Augmented-MIT-b5

This model is a fine-tuned version of nvidia/mit-b5 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0371
  • Mean Iou: 0.3355
  • Mean Accuracy: 0.6711
  • Overall Accuracy: 0.6711
  • Accuracy Background: nan
  • Accuracy Crack: 0.6711
  • Iou Background: 0.0
  • Iou Crack: 0.6711

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Crack Iou Background Iou Crack
0.0365 0.14 1000 0.0446 0.3813 0.7627 0.7627 nan 0.7627 0.0 0.7627
0.0114 0.27 2000 0.0411 0.3691 0.7381 0.7381 nan 0.7381 0.0 0.7381
0.0148 0.41 3000 0.0400 0.3224 0.6448 0.6448 nan 0.6448 0.0 0.6448
0.0134 0.54 4000 0.0413 0.2819 0.5638 0.5638 nan 0.5638 0.0 0.5638
0.013 0.68 5000 0.0392 0.3618 0.7235 0.7235 nan 0.7235 0.0 0.7235
0.0532 0.81 6000 0.0373 0.3355 0.6710 0.6710 nan 0.6710 0.0 0.6710
0.0508 0.95 7000 0.0371 0.3355 0.6711 0.6711 nan 0.6711 0.0 0.6711

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for varcoder/Augmented-MIT-b5

Base model

nvidia/mit-b5
Finetuned
(42)
this model