File size: 76,764 Bytes
5b5f554
3c71742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b5f554
3c71742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
"""Tokenization classes for UBKE."""

import collections
import copy
import itertools
import json
import os
from collections.abc import Mapping
from typing import Dict, List, Optional, Tuple, Union

import numpy as np
from transformers.models.bert_japanese.tokenization_bert_japanese import (
    BasicTokenizer,
    CharacterTokenizer,
    JumanppTokenizer,
    MecabTokenizer,
    SentencepieceTokenizer,
    SudachiTokenizer,
    WordpieceTokenizer,
    load_vocab,
)
from transformers.models.luke.tokenization_luke import (
    ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING, EntityInput, EntitySpanInput
)
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.tokenization_utils_base import (
    ENCODE_KWARGS_DOCSTRING,
    AddedToken,
    BatchEncoding,
    EncodedInput,
    PaddingStrategy,
    TextInput,
    TextInputPair,
    TensorType,
    TruncationStrategy,
    to_py_obj,
)
from transformers.utils import add_end_docstrings, is_tf_tensor, is_torch_tensor, logging


logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "entity_vocab_file": "entity_vocab.json", "spm_file": "spiece.model"}


class UbkeBertJapaneseTokenizer(PreTrainedTokenizer):
    vocab_files_names = VOCAB_FILES_NAMES
    model_input_names = ["input_ids", "attention_mask", "position_ids"]

    def __init__(
        self,
        vocab_file,
        entity_vocab_file,
        task=None,
        max_entity_length=32,
        max_mention_length=30,
        entity_token_1="<ent>",
        entity_token_2="<ent2>",
        entity_unk_token="[UNK]",
        entity_pad_token="[PAD]",
        entity_mask_token="[MASK]",
        entity_mask2_token="[MASK2]",
        spm_file=None,
        do_lower_case=False,
        do_word_tokenize=True,
        do_subword_tokenize=True,
        word_tokenizer_type="basic",
        subword_tokenizer_type="wordpiece",
        never_split=None,
        unk_token="[UNK]",
        sep_token="[SEP]",
        pad_token="[PAD]",
        cls_token="[CLS]",
        mask_token="[MASK]",
        mecab_kwargs=None,
        sudachi_kwargs=None,
        jumanpp_kwargs=None,
        **kwargs,
    ):
        ## Start of block copied from BertJapaneseTokenizer.__init__
        if subword_tokenizer_type == "sentencepiece":
            if not os.path.isfile(spm_file):
                raise ValueError(
                    f"Can't find a vocabulary file at path '{spm_file}'. To load the vocabulary from a Google"
                    " pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
                )
            self.spm_file = spm_file
        else:
            if not os.path.isfile(vocab_file):
                raise ValueError(
                    f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google"
                    " pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
                )
            self.vocab = load_vocab(vocab_file)
            self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])

        self.do_word_tokenize = do_word_tokenize
        self.word_tokenizer_type = word_tokenizer_type
        self.lower_case = do_lower_case
        self.never_split = never_split
        self.mecab_kwargs = copy.deepcopy(mecab_kwargs)
        self.sudachi_kwargs = copy.deepcopy(sudachi_kwargs)
        self.jumanpp_kwargs = copy.deepcopy(jumanpp_kwargs)
        if do_word_tokenize:
            if word_tokenizer_type == "basic":
                self.word_tokenizer = BasicTokenizer(
                    do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=False
                )
            elif word_tokenizer_type == "mecab":
                self.word_tokenizer = MecabTokenizer(
                    do_lower_case=do_lower_case, never_split=never_split, **(mecab_kwargs or {})
                )
            elif word_tokenizer_type == "sudachi":
                self.word_tokenizer = SudachiTokenizer(
                    do_lower_case=do_lower_case, never_split=never_split, **(sudachi_kwargs or {})
                )
            elif word_tokenizer_type == "jumanpp":
                self.word_tokenizer = JumanppTokenizer(
                    do_lower_case=do_lower_case, never_split=never_split, **(jumanpp_kwargs or {})
                )
            else:
                raise ValueError(f"Invalid word_tokenizer_type '{word_tokenizer_type}' is specified.")

        self.do_subword_tokenize = do_subword_tokenize
        self.subword_tokenizer_type = subword_tokenizer_type
        if do_subword_tokenize:
            if subword_tokenizer_type == "wordpiece":
                self.subword_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
            elif subword_tokenizer_type == "character":
                self.subword_tokenizer = CharacterTokenizer(vocab=self.vocab, unk_token=str(unk_token))
            elif subword_tokenizer_type == "sentencepiece":
                self.subword_tokenizer = SentencepieceTokenizer(vocab=self.spm_file, unk_token=str(unk_token))
            else:
                raise ValueError(f"Invalid subword_tokenizer_type '{subword_tokenizer_type}' is specified.")
        ## End of block copied from BertJapaneseTokenizer.__init__

        ## Start of block copied from LukeTokenizer.__init__
        # we add 2 special tokens for downstream tasks
        # for more information about lstrip and rstrip, see https://github.com/huggingface/transformers/pull/2778
        entity_token_1 = (
            AddedToken(entity_token_1, lstrip=False, rstrip=False)
            if isinstance(entity_token_1, str)
            else entity_token_1
        )
        entity_token_2 = (
            AddedToken(entity_token_2, lstrip=False, rstrip=False)
            if isinstance(entity_token_2, str)
            else entity_token_2
        )
        kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", [])
        kwargs["additional_special_tokens"] += [entity_token_1, entity_token_2]

        with open(entity_vocab_file, encoding="utf-8") as entity_vocab_handle:
            self.entity_vocab = json.load(entity_vocab_handle)
        for entity_special_token in [entity_unk_token, entity_pad_token, entity_mask_token, entity_mask2_token]:
            if entity_special_token not in self.entity_vocab:
                raise ValueError(
                    f"Specified entity special token ``{entity_special_token}`` is not found in entity_vocab. "
                    f"Probably an incorrect entity vocab file is loaded: {entity_vocab_file}."
                )
        self.entity_unk_token_id = self.entity_vocab[entity_unk_token]
        self.entity_pad_token_id = self.entity_vocab[entity_pad_token]
        self.entity_mask_token_id = self.entity_vocab[entity_mask_token]
        self.entity_mask2_token_id = self.entity_vocab[entity_mask2_token]

        self.task = task
        if task is None or task == "entity_span_classification":
            self.max_entity_length = max_entity_length
        elif task == "entity_classification":
            self.max_entity_length = 1
        elif task == "entity_pair_classification":
            self.max_entity_length = 2
        else:
            raise ValueError(
                f"Task {task} not supported. Select task from ['entity_classification', 'entity_pair_classification',"
                " 'entity_span_classification'] only."
            )

        self.max_mention_length = max_mention_length
        ## End of block copied from LukeTokenizer.__init__

        super().__init__(
            spm_file=spm_file,
            unk_token=unk_token,
            sep_token=sep_token,
            pad_token=pad_token,
            cls_token=cls_token,
            mask_token=mask_token,
            do_lower_case=do_lower_case,
            do_word_tokenize=do_word_tokenize,
            do_subword_tokenize=do_subword_tokenize,
            word_tokenizer_type=word_tokenizer_type,
            subword_tokenizer_type=subword_tokenizer_type,
            never_split=never_split,
            mecab_kwargs=mecab_kwargs,
            sudachi_kwargs=sudachi_kwargs,
            jumanpp_kwargs=jumanpp_kwargs,
            task=task,
            max_entity_length=max_entity_length,  # Fixed to set the correct value
            max_mention_length=max_mention_length,  # Fixed to set the correct value
            entity_token_1=entity_token_1.content,  # Fixed to set the correct value
            entity_token_2=entity_token_2.content,  # Fixed to set the correct value
            entity_unk_token=entity_unk_token,
            entity_pad_token=entity_pad_token,
            entity_mask_token=entity_mask_token,
            entity_mask2_token=entity_mask2_token,
            **kwargs,
        )

    ## Copied from BertJapaneseTokenizer
    @property
    def do_lower_case(self):
        return self.lower_case

    ## Copied from BertJapaneseTokenizer
    def __getstate__(self):
        state = dict(self.__dict__)
        if self.word_tokenizer_type in ["mecab", "sudachi", "jumanpp"]:
            del state["word_tokenizer"]
        return state

    ## Copied from BertJapaneseTokenizer
    def __setstate__(self, state):
        self.__dict__ = state
        if self.word_tokenizer_type == "mecab":
            self.word_tokenizer = MecabTokenizer(
                do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.mecab_kwargs or {})
            )
        elif self.word_tokenizer_type == "sudachi":
            self.word_tokenizer = SudachiTokenizer(
                do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.sudachi_kwargs or {})
            )
        elif self.word_tokenizer_type == "jumanpp":
            self.word_tokenizer = JumanppTokenizer(
                do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.jumanpp_kwargs or {})
            )

    ## Copied from BertJapaneseTokenizer
    def _tokenize(self, text):
        if self.do_word_tokenize:
            tokens = self.word_tokenizer.tokenize(text, never_split=self.all_special_tokens)
        else:
            tokens = [text]

        if self.do_subword_tokenize:
            split_tokens = [sub_token for token in tokens for sub_token in self.subword_tokenizer.tokenize(token)]
        else:
            split_tokens = tokens

        return split_tokens

    # Copied from BertJapaneseTokenizer
    @property
    def vocab_size(self):
        if self.subword_tokenizer_type == "sentencepiece":
            return len(self.subword_tokenizer.sp_model)
        return len(self.vocab)

    ## Copied from BertJapaneseTokenizer
    def get_vocab(self):
        if self.subword_tokenizer_type == "sentencepiece":
            vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
            vocab.update(self.added_tokens_encoder)
            return vocab
        return dict(self.vocab, **self.added_tokens_encoder)

    ## Copied from BertJapaneseTokenizer
    def _convert_token_to_id(self, token):
        """Converts a token (str) in an id using the vocab."""
        if self.subword_tokenizer_type == "sentencepiece":
            return self.subword_tokenizer.sp_model.PieceToId(token)
        return self.vocab.get(token, self.vocab.get(self.unk_token))

    ## Copied from BertJapaneseTokenizer
    def _convert_id_to_token(self, index):
        """Converts an index (integer) in a token (str) using the vocab."""
        if self.subword_tokenizer_type == "sentencepiece":
            return self.subword_tokenizer.sp_model.IdToPiece(index)
        return self.ids_to_tokens.get(index, self.unk_token)

    ## Copied from BertJapaneseTokenizer
    def convert_tokens_to_string(self, tokens):
        """Converts a sequence of tokens (string) in a single string."""
        if self.subword_tokenizer_type == "sentencepiece":
            return self.subword_tokenizer.sp_model.decode(tokens)
        out_string = " ".join(tokens).replace(" ##", "").strip()
        return out_string

    ## Copied from BertJapaneseTokenizer
    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
        adding special tokens. A BERT sequence has the following format:

        - single sequence: `[CLS] X [SEP]`
        - pair of sequences: `[CLS] A [SEP] B [SEP]`

        Args:
            token_ids_0 (`List[int]`):
                List of IDs to which the special tokens will be added.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
        """
        if token_ids_1 is None:
            return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
        cls = [self.cls_token_id]
        sep = [self.sep_token_id]
        return cls + token_ids_0 + sep + token_ids_1 + sep

    ## Copied from BertJapaneseTokenizer
    def get_special_tokens_mask(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
    ) -> List[int]:
        """
        Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
        special tokens using the tokenizer `prepare_for_model` method.

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.
            already_has_special_tokens (`bool`, *optional*, defaults to `False`):
                Whether or not the token list is already formatted with special tokens for the model.

        Returns:
            `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
        """

        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
            )

        if token_ids_1 is not None:
            return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
        return [1] + ([0] * len(token_ids_0)) + [1]

    ## Copied from BertJapaneseTokenizer
    def create_token_type_ids_from_sequences(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        """
        Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
        pair mask has the following format:

        ```
        0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
        | first sequence    | second sequence |
        ```

        If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).

        Args:
            token_ids_0 (`List[int]`):
                List of IDs.
            token_ids_1 (`List[int]`, *optional*):
                Optional second list of IDs for sequence pairs.

        Returns:
            `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
        """
        sep = [self.sep_token_id]
        cls = [self.cls_token_id]
        if token_ids_1 is None:
            return len(cls + token_ids_0 + sep) * [0]
        return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]

    ## Copied from LukeTokenizer
    @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
    def __call__(
        self,
        text: Union[TextInput, List[TextInput]],
        text_pair: Optional[Union[TextInput, List[TextInput]]] = None,
        entity_spans: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None,
        entity_spans_pair: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None,
        entities: Optional[Union[EntityInput, List[EntityInput]]] = None,
        entities_pair: Optional[Union[EntityInput, List[EntityInput]]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length: Optional[int] = None,
        max_entity_length: Optional[int] = None,
        stride: int = 0,
        is_split_into_words: Optional[bool] = False,
        pad_to_multiple_of: Optional[int] = None,
        padding_side: Optional[bool] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        """
        Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
        sequences, depending on the task you want to prepare them for.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this
                tokenizer does not support tokenization based on pretokenized strings.
            text_pair (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this
                tokenizer does not support tokenization based on pretokenized strings.
            entity_spans (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*):
                The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each
                with two integers denoting character-based start and end positions of entities. If you specify
                `"entity_classification"` or `"entity_pair_classification"` as the `task` argument in the constructor,
                the length of each sequence must be 1 or 2, respectively. If you specify `entities`, the length of each
                sequence must be equal to the length of each sequence of `entities`.
            entity_spans_pair (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*):
                The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each
                with two integers denoting character-based start and end positions of entities. If you specify the
                `task` argument in the constructor, this argument is ignored. If you specify `entities_pair`, the
                length of each sequence must be equal to the length of each sequence of `entities_pair`.
            entities (`List[str]`, `List[List[str]]`, *optional*):
                The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings
                representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los
                Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of
                each sequence must be equal to the length of each sequence of `entity_spans`. If you specify
                `entity_spans` without specifying this argument, the entity sequence or the batch of entity sequences
                is automatically constructed by filling it with the [MASK] entity.
            entities_pair (`List[str]`, `List[List[str]]`, *optional*):
                The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings
                representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los
                Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of
                each sequence must be equal to the length of each sequence of `entity_spans_pair`. If you specify
                `entity_spans_pair` without specifying this argument, the entity sequence or the batch of entity
                sequences is automatically constructed by filling it with the [MASK] entity.
            max_entity_length (`int`, *optional*):
                The maximum length of `entity_ids`.
        """
        # Input type checking for clearer error
        is_valid_single_text = isinstance(text, str)
        is_valid_batch_text = isinstance(text, (list, tuple)) and (len(text) == 0 or (isinstance(text[0], str)))
        if not (is_valid_single_text or is_valid_batch_text):
            raise ValueError("text input must be of type `str` (single example) or `List[str]` (batch).")

        is_valid_single_text_pair = isinstance(text_pair, str)
        is_valid_batch_text_pair = isinstance(text_pair, (list, tuple)) and (
            len(text_pair) == 0 or isinstance(text_pair[0], str)
        )
        if not (text_pair is None or is_valid_single_text_pair or is_valid_batch_text_pair):
            raise ValueError("text_pair input must be of type `str` (single example) or `List[str]` (batch).")

        is_batched = bool(isinstance(text, (list, tuple)))

        if is_batched:
            batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
            if entities is None:
                batch_entities_or_entities_pairs = None
            else:
                batch_entities_or_entities_pairs = (
                    list(zip(entities, entities_pair)) if entities_pair is not None else entities
                )

            if entity_spans is None:
                batch_entity_spans_or_entity_spans_pairs = None
            else:
                batch_entity_spans_or_entity_spans_pairs = (
                    list(zip(entity_spans, entity_spans_pair)) if entity_spans_pair is not None else entity_spans
                )

            return self.batch_encode_plus(
                batch_text_or_text_pairs=batch_text_or_text_pairs,
                batch_entity_spans_or_entity_spans_pairs=batch_entity_spans_or_entity_spans_pairs,
                batch_entities_or_entities_pairs=batch_entities_or_entities_pairs,
                add_special_tokens=add_special_tokens,
                padding=padding,
                truncation=truncation,
                max_length=max_length,
                max_entity_length=max_entity_length,
                stride=stride,
                is_split_into_words=is_split_into_words,
                pad_to_multiple_of=pad_to_multiple_of,
                padding_side=padding_side,
                return_tensors=return_tensors,
                return_token_type_ids=return_token_type_ids,
                return_attention_mask=return_attention_mask,
                return_overflowing_tokens=return_overflowing_tokens,
                return_special_tokens_mask=return_special_tokens_mask,
                return_offsets_mapping=return_offsets_mapping,
                return_length=return_length,
                verbose=verbose,
                **kwargs,
            )
        else:
            return self.encode_plus(
                text=text,
                text_pair=text_pair,
                entity_spans=entity_spans,
                entity_spans_pair=entity_spans_pair,
                entities=entities,
                entities_pair=entities_pair,
                add_special_tokens=add_special_tokens,
                padding=padding,
                truncation=truncation,
                max_length=max_length,
                max_entity_length=max_entity_length,
                stride=stride,
                is_split_into_words=is_split_into_words,
                pad_to_multiple_of=pad_to_multiple_of,
                padding_side=padding_side,
                return_tensors=return_tensors,
                return_token_type_ids=return_token_type_ids,
                return_attention_mask=return_attention_mask,
                return_overflowing_tokens=return_overflowing_tokens,
                return_special_tokens_mask=return_special_tokens_mask,
                return_offsets_mapping=return_offsets_mapping,
                return_length=return_length,
                verbose=verbose,
                **kwargs,
            )

    ## Copied from LukeTokenizer
    def _encode_plus(
        self,
        text: Union[TextInput],
        text_pair: Optional[Union[TextInput]] = None,
        entity_spans: Optional[EntitySpanInput] = None,
        entity_spans_pair: Optional[EntitySpanInput] = None,
        entities: Optional[EntityInput] = None,
        entities_pair: Optional[EntityInput] = None,
        add_special_tokens: bool = True,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
        max_length: Optional[int] = None,
        max_entity_length: Optional[int] = None,
        stride: int = 0,
        is_split_into_words: Optional[bool] = False,
        pad_to_multiple_of: Optional[int] = None,
        padding_side: Optional[bool] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        if return_offsets_mapping:
            raise NotImplementedError(
                "return_offset_mapping is not available when using Python tokenizers. "
                "To use this feature, change your tokenizer to one deriving from "
                "transformers.PreTrainedTokenizerFast. "
                "More information on available tokenizers at "
                "https://github.com/huggingface/transformers/pull/2674"
            )

        if is_split_into_words:
            raise NotImplementedError("is_split_into_words is not supported in this tokenizer.")

        (
            first_ids,
            second_ids,
            first_entity_ids,
            second_entity_ids,
            first_entity_token_spans,
            second_entity_token_spans,
        ) = self._create_input_sequence(
            text=text,
            text_pair=text_pair,
            entities=entities,
            entities_pair=entities_pair,
            entity_spans=entity_spans,
            entity_spans_pair=entity_spans_pair,
            **kwargs,
        )

        # prepare_for_model will create the attention_mask and token_type_ids
        return self.prepare_for_model(
            first_ids,
            pair_ids=second_ids,
            entity_ids=first_entity_ids,
            pair_entity_ids=second_entity_ids,
            entity_token_spans=first_entity_token_spans,
            pair_entity_token_spans=second_entity_token_spans,
            add_special_tokens=add_special_tokens,
            padding=padding_strategy.value,
            truncation=truncation_strategy.value,
            max_length=max_length,
            max_entity_length=max_entity_length,
            stride=stride,
            pad_to_multiple_of=pad_to_multiple_of,
            padding_side=padding_side,
            return_tensors=return_tensors,
            prepend_batch_axis=True,
            return_attention_mask=return_attention_mask,
            return_token_type_ids=return_token_type_ids,
            return_overflowing_tokens=return_overflowing_tokens,
            return_special_tokens_mask=return_special_tokens_mask,
            return_length=return_length,
            verbose=verbose,
        )

    ## Copied from LukeTokenizer
    def _batch_encode_plus(
        self,
        batch_text_or_text_pairs: Union[List[TextInput], List[TextInputPair]],
        batch_entity_spans_or_entity_spans_pairs: Optional[
            Union[List[EntitySpanInput], List[Tuple[EntitySpanInput, EntitySpanInput]]]
        ] = None,
        batch_entities_or_entities_pairs: Optional[
            Union[List[EntityInput], List[Tuple[EntityInput, EntityInput]]]
        ] = None,
        add_special_tokens: bool = True,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
        max_length: Optional[int] = None,
        max_entity_length: Optional[int] = None,
        stride: int = 0,
        is_split_into_words: Optional[bool] = False,
        pad_to_multiple_of: Optional[int] = None,
        padding_side: Optional[bool] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        **kwargs,
    ) -> BatchEncoding:
        if return_offsets_mapping:
            raise NotImplementedError(
                "return_offset_mapping is not available when using Python tokenizers. "
                "To use this feature, change your tokenizer to one deriving from "
                "transformers.PreTrainedTokenizerFast."
            )

        if is_split_into_words:
            raise NotImplementedError("is_split_into_words is not supported in this tokenizer.")

        # input_ids is a list of tuples (one for each example in the batch)
        input_ids = []
        entity_ids = []
        entity_token_spans = []
        for index, text_or_text_pair in enumerate(batch_text_or_text_pairs):
            if not isinstance(text_or_text_pair, (list, tuple)):
                text, text_pair = text_or_text_pair, None
            else:
                text, text_pair = text_or_text_pair

            entities, entities_pair = None, None
            if batch_entities_or_entities_pairs is not None:
                entities_or_entities_pairs = batch_entities_or_entities_pairs[index]
                if entities_or_entities_pairs:
                    if isinstance(entities_or_entities_pairs[0], str):
                        entities, entities_pair = entities_or_entities_pairs, None
                    else:
                        entities, entities_pair = entities_or_entities_pairs

            entity_spans, entity_spans_pair = None, None
            if batch_entity_spans_or_entity_spans_pairs is not None:
                entity_spans_or_entity_spans_pairs = batch_entity_spans_or_entity_spans_pairs[index]
                if len(entity_spans_or_entity_spans_pairs) > 0 and isinstance(
                    entity_spans_or_entity_spans_pairs[0], list
                ):
                    entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs
                else:
                    entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs, None

            (
                first_ids,
                second_ids,
                first_entity_ids,
                second_entity_ids,
                first_entity_token_spans,
                second_entity_token_spans,
            ) = self._create_input_sequence(
                text=text,
                text_pair=text_pair,
                entities=entities,
                entities_pair=entities_pair,
                entity_spans=entity_spans,
                entity_spans_pair=entity_spans_pair,
                **kwargs,
            )
            input_ids.append((first_ids, second_ids))
            entity_ids.append((first_entity_ids, second_entity_ids))
            entity_token_spans.append((first_entity_token_spans, second_entity_token_spans))

        batch_outputs = self._batch_prepare_for_model(
            input_ids,
            batch_entity_ids_pairs=entity_ids,
            batch_entity_token_spans_pairs=entity_token_spans,
            add_special_tokens=add_special_tokens,
            padding_strategy=padding_strategy,
            truncation_strategy=truncation_strategy,
            max_length=max_length,
            max_entity_length=max_entity_length,
            stride=stride,
            pad_to_multiple_of=pad_to_multiple_of,
            padding_side=padding_side,
            return_attention_mask=return_attention_mask,
            return_token_type_ids=return_token_type_ids,
            return_overflowing_tokens=return_overflowing_tokens,
            return_special_tokens_mask=return_special_tokens_mask,
            return_length=return_length,
            return_tensors=return_tensors,
            verbose=verbose,
        )

        return BatchEncoding(batch_outputs)

    ## Copied from LukeTokenizer
    def _check_entity_input_format(self, entities: Optional[EntityInput], entity_spans: Optional[EntitySpanInput]):
        if not isinstance(entity_spans, list):
            raise TypeError("entity_spans should be given as a list")
        elif len(entity_spans) > 0 and not isinstance(entity_spans[0], tuple):
            raise ValueError(
                "entity_spans should be given as a list of tuples containing the start and end character indices"
            )

        if entities is not None:
            if not isinstance(entities, list):
                raise ValueError("If you specify entities, they should be given as a list")

            if len(entities) > 0 and not isinstance(entities[0], str):
                raise ValueError("If you specify entities, they should be given as a list of entity names")

            if len(entities) != len(entity_spans):
                raise ValueError("If you specify entities, entities and entity_spans must be the same length")

    ## Copied from LukeTokenizer
    def _create_input_sequence(
        self,
        text: Union[TextInput],
        text_pair: Optional[Union[TextInput]] = None,
        entities: Optional[EntityInput] = None,
        entities_pair: Optional[EntityInput] = None,
        entity_spans: Optional[EntitySpanInput] = None,
        entity_spans_pair: Optional[EntitySpanInput] = None,
        **kwargs,
    ) -> Tuple[list, list, list, list, list, list]:
        def get_input_ids(text):
            tokens = self.tokenize(text, **kwargs)
            return self.convert_tokens_to_ids(tokens)

        def get_input_ids_and_entity_token_spans(text, entity_spans):
            if entity_spans is None:
                return get_input_ids(text), None

            cur = 0
            input_ids = []
            entity_token_spans = [None] * len(entity_spans)

            split_char_positions = sorted(frozenset(itertools.chain(*entity_spans)))
            char_pos2token_pos = {}

            for split_char_position in split_char_positions:
                orig_split_char_position = split_char_position
                if (
                    split_char_position > 0 and text[split_char_position - 1] == " "
                ):  # whitespace should be prepended to the following token
                    split_char_position -= 1
                if cur != split_char_position:
                    input_ids += get_input_ids(text[cur:split_char_position])
                    cur = split_char_position
                char_pos2token_pos[orig_split_char_position] = len(input_ids)

            input_ids += get_input_ids(text[cur:])

            entity_token_spans = [
                (char_pos2token_pos[char_start], char_pos2token_pos[char_end]) for char_start, char_end in entity_spans
            ]

            return input_ids, entity_token_spans

        first_ids, second_ids = None, None
        first_entity_ids, second_entity_ids = None, None
        first_entity_token_spans, second_entity_token_spans = None, None

        if self.task is None:
            if entity_spans is None:
                first_ids = get_input_ids(text)
            else:
                self._check_entity_input_format(entities, entity_spans)

                first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
                if entities is None:
                    first_entity_ids = [self.entity_mask_token_id] * len(entity_spans)
                else:
                    first_entity_ids = [self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities]

            if text_pair is not None:
                if entity_spans_pair is None:
                    second_ids = get_input_ids(text_pair)
                else:
                    self._check_entity_input_format(entities_pair, entity_spans_pair)

                    second_ids, second_entity_token_spans = get_input_ids_and_entity_token_spans(
                        text_pair, entity_spans_pair
                    )
                    if entities_pair is None:
                        second_entity_ids = [self.entity_mask_token_id] * len(entity_spans_pair)
                    else:
                        second_entity_ids = [
                            self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities_pair
                        ]

        elif self.task == "entity_classification":
            if not (isinstance(entity_spans, list) and len(entity_spans) == 1 and isinstance(entity_spans[0], tuple)):
                raise ValueError(
                    "Entity spans should be a list containing a single tuple "
                    "containing the start and end character indices of an entity"
                )
            first_entity_ids = [self.entity_mask_token_id]
            first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)

            # add special tokens to input ids
            entity_token_start, entity_token_end = first_entity_token_spans[0]
            first_ids = (
                first_ids[:entity_token_end] + [self.additional_special_tokens_ids[0]] + first_ids[entity_token_end:]
            )
            first_ids = (
                first_ids[:entity_token_start]
                + [self.additional_special_tokens_ids[0]]
                + first_ids[entity_token_start:]
            )
            first_entity_token_spans = [(entity_token_start, entity_token_end + 2)]

        elif self.task == "entity_pair_classification":
            if not (
                isinstance(entity_spans, list)
                and len(entity_spans) == 2
                and isinstance(entity_spans[0], tuple)
                and isinstance(entity_spans[1], tuple)
            ):
                raise ValueError(
                    "Entity spans should be provided as a list of two tuples, "
                    "each tuple containing the start and end character indices of an entity"
                )

            head_span, tail_span = entity_spans
            first_entity_ids = [self.entity_mask_token_id, self.entity_mask2_token_id]
            first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)

            head_token_span, tail_token_span = first_entity_token_spans
            token_span_with_special_token_ids = [
                (head_token_span, self.additional_special_tokens_ids[0]),
                (tail_token_span, self.additional_special_tokens_ids[1]),
            ]
            if head_token_span[0] < tail_token_span[0]:
                first_entity_token_spans[0] = (head_token_span[0], head_token_span[1] + 2)
                first_entity_token_spans[1] = (tail_token_span[0] + 2, tail_token_span[1] + 4)
                token_span_with_special_token_ids = reversed(token_span_with_special_token_ids)
            else:
                first_entity_token_spans[0] = (head_token_span[0] + 2, head_token_span[1] + 4)
                first_entity_token_spans[1] = (tail_token_span[0], tail_token_span[1] + 2)

            for (entity_token_start, entity_token_end), special_token_id in token_span_with_special_token_ids:
                first_ids = first_ids[:entity_token_end] + [special_token_id] + first_ids[entity_token_end:]
                first_ids = first_ids[:entity_token_start] + [special_token_id] + first_ids[entity_token_start:]

        elif self.task == "entity_span_classification":
            if not (isinstance(entity_spans, list) and len(entity_spans) > 0 and isinstance(entity_spans[0], tuple)):
                raise ValueError(
                    "Entity spans should be provided as a list of tuples, "
                    "each tuple containing the start and end character indices of an entity"
                )

            first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
            first_entity_ids = [self.entity_mask_token_id] * len(entity_spans)

        else:
            raise ValueError(f"Task {self.task} not supported")

        return (
            first_ids,
            second_ids,
            first_entity_ids,
            second_entity_ids,
            first_entity_token_spans,
            second_entity_token_spans,
        )

    ## Copied from LukeTokenizer
    @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
    def _batch_prepare_for_model(
        self,
        batch_ids_pairs: List[Tuple[List[int], None]],
        batch_entity_ids_pairs: List[Tuple[Optional[List[int]], Optional[List[int]]]],
        batch_entity_token_spans_pairs: List[Tuple[Optional[List[Tuple[int, int]]], Optional[List[Tuple[int, int]]]]],
        add_special_tokens: bool = True,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
        max_length: Optional[int] = None,
        max_entity_length: Optional[int] = None,
        stride: int = 0,
        pad_to_multiple_of: Optional[int] = None,
        padding_side: Optional[bool] = None,
        return_tensors: Optional[str] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_length: bool = False,
        verbose: bool = True,
    ) -> BatchEncoding:
        """
        Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
        adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
        manages a moving window (with user defined stride) for overflowing tokens


        Args:
            batch_ids_pairs: list of tokenized input ids or input ids pairs
            batch_entity_ids_pairs: list of entity ids or entity ids pairs
            batch_entity_token_spans_pairs: list of entity spans or entity spans pairs
            max_entity_length: The maximum length of the entity sequence.
        """

        batch_outputs = {}
        for input_ids, entity_ids, entity_token_span_pairs in zip(
            batch_ids_pairs, batch_entity_ids_pairs, batch_entity_token_spans_pairs
        ):
            first_ids, second_ids = input_ids
            first_entity_ids, second_entity_ids = entity_ids
            first_entity_token_spans, second_entity_token_spans = entity_token_span_pairs
            outputs = self.prepare_for_model(
                first_ids,
                second_ids,
                entity_ids=first_entity_ids,
                pair_entity_ids=second_entity_ids,
                entity_token_spans=first_entity_token_spans,
                pair_entity_token_spans=second_entity_token_spans,
                add_special_tokens=add_special_tokens,
                padding=PaddingStrategy.DO_NOT_PAD.value,  # we pad in batch afterward
                truncation=truncation_strategy.value,
                max_length=max_length,
                max_entity_length=max_entity_length,
                stride=stride,
                pad_to_multiple_of=None,  # we pad in batch afterward
                padding_side=None,  # we pad in batch afterward
                return_attention_mask=False,  # we pad in batch afterward
                return_token_type_ids=return_token_type_ids,
                return_overflowing_tokens=return_overflowing_tokens,
                return_special_tokens_mask=return_special_tokens_mask,
                return_length=return_length,
                return_tensors=None,  # We convert the whole batch to tensors at the end
                prepend_batch_axis=False,
                verbose=verbose,
            )

            for key, value in outputs.items():
                if key not in batch_outputs:
                    batch_outputs[key] = []
                batch_outputs[key].append(value)

        batch_outputs = self.pad(
            batch_outputs,
            padding=padding_strategy.value,
            max_length=max_length,
            pad_to_multiple_of=pad_to_multiple_of,
            padding_side=padding_side,
            return_attention_mask=return_attention_mask,
        )

        batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)

        return batch_outputs

    ## Copied from LukeTokenizer with some lines added
    @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
    def prepare_for_model(
        self,
        ids: List[int],
        pair_ids: Optional[List[int]] = None,
        entity_ids: Optional[List[int]] = None,
        pair_entity_ids: Optional[List[int]] = None,
        entity_token_spans: Optional[List[Tuple[int, int]]] = None,
        pair_entity_token_spans: Optional[List[Tuple[int, int]]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length: Optional[int] = None,
        max_entity_length: Optional[int] = None,
        stride: int = 0,
        pad_to_multiple_of: Optional[int] = None,
        padding_side: Optional[bool] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        prepend_batch_axis: bool = False,
        **kwargs,
    ) -> BatchEncoding:
        """
        Prepares a sequence of input id, entity id and entity span, or a pair of sequences of inputs ids, entity ids,
        entity spans so that it can be used by the model. It adds special tokens, truncates sequences if overflowing
        while taking into account the special tokens and manages a moving window (with user defined stride) for
        overflowing tokens. Please Note, for *pair_ids* different than `None` and *truncation_strategy = longest_first*
        or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an
        error.

        Args:
            ids (`List[int]`):
                Tokenized input ids of the first sequence.
            pair_ids (`List[int]`, *optional*):
                Tokenized input ids of the second sequence.
            entity_ids (`List[int]`, *optional*):
                Entity ids of the first sequence.
            pair_entity_ids (`List[int]`, *optional*):
                Entity ids of the second sequence.
            entity_token_spans (`List[Tuple[int, int]]`, *optional*):
                Entity spans of the first sequence.
            pair_entity_token_spans (`List[Tuple[int, int]]`, *optional*):
                Entity spans of the second sequence.
            max_entity_length (`int`, *optional*):
                The maximum length of the entity sequence.
        """

        # Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
        padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
            padding=padding,
            truncation=truncation,
            max_length=max_length,
            pad_to_multiple_of=pad_to_multiple_of,
            verbose=verbose,
            **kwargs,
        )

        # Compute lengths
        pair = bool(pair_ids is not None)
        len_ids = len(ids)
        len_pair_ids = len(pair_ids) if pair else 0

        if return_token_type_ids and not add_special_tokens:
            raise ValueError(
                "Asking to return token_type_ids while setting add_special_tokens to False "
                "results in an undefined behavior. Please set add_special_tokens to True or "
                "set return_token_type_ids to None."
            )
        if (
            return_overflowing_tokens
            and truncation_strategy == TruncationStrategy.LONGEST_FIRST
            and pair_ids is not None
        ):
            raise ValueError(
                "Not possible to return overflowing tokens for pair of sequences with the "
                "`longest_first`. Please select another truncation strategy than `longest_first`, "
                "for instance `only_second` or `only_first`."
            )

        # Load from model defaults
        if return_token_type_ids is None:
            return_token_type_ids = "token_type_ids" in self.model_input_names
        if return_attention_mask is None:
            return_attention_mask = "attention_mask" in self.model_input_names

        encoded_inputs = {}

        # Compute the total size of the returned word encodings
        total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)

        # Truncation: Handle max sequence length and max_entity_length
        overflowing_tokens = []
        if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
            # truncate words up to max_length
            ids, pair_ids, overflowing_tokens = self.truncate_sequences(
                ids,
                pair_ids=pair_ids,
                num_tokens_to_remove=total_len - max_length,
                truncation_strategy=truncation_strategy,
                stride=stride,
            )

        if return_overflowing_tokens:
            encoded_inputs["overflowing_tokens"] = overflowing_tokens
            encoded_inputs["num_truncated_tokens"] = total_len - max_length

        # Add special tokens
        if add_special_tokens:
            sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
            token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
            entity_token_offset = 1  # 1 * <s> token
            pair_entity_token_offset = len(ids) + 3  # 1 * <s> token & 2 * <sep> tokens
        else:
            sequence = ids + pair_ids if pair else ids
            token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
            entity_token_offset = 0
            pair_entity_token_offset = len(ids)

        # Build output dictionary
        encoded_inputs["input_ids"] = sequence
        encoded_inputs["position_ids"] = list(range(len(sequence)))  ## Added
        if return_token_type_ids:
            encoded_inputs["token_type_ids"] = token_type_ids
        if return_special_tokens_mask:
            if add_special_tokens:
                encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
            else:
                encoded_inputs["special_tokens_mask"] = [0] * len(sequence)

        # Set max entity length
        if not max_entity_length:
            max_entity_length = self.max_entity_length

        if entity_ids is not None:
            total_entity_len = 0
            num_invalid_entities = 0
            valid_entity_ids = [ent_id for ent_id, span in zip(entity_ids, entity_token_spans) if span[1] <= len(ids)]
            valid_entity_token_spans = [span for span in entity_token_spans if span[1] <= len(ids)]

            total_entity_len += len(valid_entity_ids)
            num_invalid_entities += len(entity_ids) - len(valid_entity_ids)

            valid_pair_entity_ids, valid_pair_entity_token_spans = None, None
            if pair_entity_ids is not None:
                valid_pair_entity_ids = [
                    ent_id
                    for ent_id, span in zip(pair_entity_ids, pair_entity_token_spans)
                    if span[1] <= len(pair_ids)
                ]
                valid_pair_entity_token_spans = [span for span in pair_entity_token_spans if span[1] <= len(pair_ids)]
                total_entity_len += len(valid_pair_entity_ids)
                num_invalid_entities += len(pair_entity_ids) - len(valid_pair_entity_ids)

            if num_invalid_entities != 0:
                logger.warning(
                    f"{num_invalid_entities} entities are ignored because their entity spans are invalid due to the"
                    " truncation of input tokens"
                )

            if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and total_entity_len > max_entity_length:
                # truncate entities up to max_entity_length
                valid_entity_ids, valid_pair_entity_ids, overflowing_entities = self.truncate_sequences(
                    valid_entity_ids,
                    pair_ids=valid_pair_entity_ids,
                    num_tokens_to_remove=total_entity_len - max_entity_length,
                    truncation_strategy=truncation_strategy,
                    stride=stride,
                )
                valid_entity_token_spans = valid_entity_token_spans[: len(valid_entity_ids)]
                if valid_pair_entity_token_spans is not None:
                    valid_pair_entity_token_spans = valid_pair_entity_token_spans[: len(valid_pair_entity_ids)]

            if return_overflowing_tokens:
                encoded_inputs["overflowing_entities"] = overflowing_entities
                encoded_inputs["num_truncated_entities"] = total_entity_len - max_entity_length

            final_entity_ids = valid_entity_ids + valid_pair_entity_ids if valid_pair_entity_ids else valid_entity_ids
            encoded_inputs["entity_ids"] = list(final_entity_ids)
            entity_position_ids = []
            entity_start_positions = []
            entity_end_positions = []
            for token_spans, offset in (
                (valid_entity_token_spans, entity_token_offset),
                (valid_pair_entity_token_spans, pair_entity_token_offset),
            ):
                if token_spans is not None:
                    for start, end in token_spans:
                        start += offset
                        end += offset
                        position_ids = list(range(start, end))[: self.max_mention_length]
                        position_ids += [-1] * (self.max_mention_length - end + start)
                        entity_position_ids.append(position_ids)
                        entity_start_positions.append(start)
                        entity_end_positions.append(end - 1)

            encoded_inputs["entity_position_ids"] = entity_position_ids
            if self.task == "entity_span_classification":
                encoded_inputs["entity_start_positions"] = entity_start_positions
                encoded_inputs["entity_end_positions"] = entity_end_positions

            if return_token_type_ids:
                encoded_inputs["entity_token_type_ids"] = [0] * len(encoded_inputs["entity_ids"])

        # Check lengths
        self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)

        # Padding
        if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
            encoded_inputs = self.pad(
                encoded_inputs,
                max_length=max_length,
                max_entity_length=max_entity_length,
                padding=padding_strategy.value,
                pad_to_multiple_of=pad_to_multiple_of,
                padding_side=padding_side,
                return_attention_mask=return_attention_mask,
            )

        if return_length:
            encoded_inputs["length"] = len(encoded_inputs["input_ids"])

        batch_outputs = BatchEncoding(
            encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
        )

        return batch_outputs

    ## Copied from LukeTokenizer
    def pad(
        self,
        encoded_inputs: Union[
            BatchEncoding,
            List[BatchEncoding],
            Dict[str, EncodedInput],
            Dict[str, List[EncodedInput]],
            List[Dict[str, EncodedInput]],
        ],
        padding: Union[bool, str, PaddingStrategy] = True,
        max_length: Optional[int] = None,
        max_entity_length: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
        padding_side: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        verbose: bool = True,
    ) -> BatchEncoding:
        """
        Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
        in the batch. Padding side (left/right) padding token ids are defined at the tokenizer level (with
        `self.padding_side`, `self.pad_token_id` and `self.pad_token_type_id`) .. note:: If the `encoded_inputs` passed
        are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the result will use the same type unless
        you provide a different tensor type with `return_tensors`. In the case of PyTorch tensors, you will lose the
        specific device of your tensors however.

        Args:
            encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`):
                Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of
                tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str,
                List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
                collate function. Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or
                TensorFlow tensors), see the note above for the return type.
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
                 Select a strategy to pad the returned sequences (according to the model's padding side and padding
                 index) among:

                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            max_length (`int`, *optional*):
                Maximum length of the returned list and optionally padding length (see above).
            max_entity_length (`int`, *optional*):
                The maximum length of the entity sequence.
            pad_to_multiple_of (`int`, *optional*):
                If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
                the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
            padding_side:
                The side on which the model should have padding applied. Should be selected between ['right', 'left'].
                Default value is picked from the class attribute of the same name.
            return_attention_mask (`bool`, *optional*):
                Whether to return the attention mask. If left to the default, will return the attention mask according
                to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention
                masks?](../glossary#attention-mask)
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors instead of list of python integers. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return Numpy `np.ndarray` objects.
            verbose (`bool`, *optional*, defaults to `True`):
                Whether or not to print more information and warnings.
        """
        # If we have a list of dicts, let's convert it in a dict of lists
        # We do this to allow using this method as a collate_fn function in PyTorch Dataloader
        if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping):
            encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}

        # The model's main input name, usually `input_ids`, has be passed for padding
        if self.model_input_names[0] not in encoded_inputs:
            raise ValueError(
                "You should supply an encoding or a list of encodings to this method "
                f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
            )

        required_input = encoded_inputs[self.model_input_names[0]]

        if not required_input:
            if return_attention_mask:
                encoded_inputs["attention_mask"] = []
            return encoded_inputs

        # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
        # and rebuild them afterwards if no return_tensors is specified
        # Note that we lose the specific device the tensor may be on for PyTorch

        first_element = required_input[0]
        if isinstance(first_element, (list, tuple)):
            # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
            index = 0
            while len(required_input[index]) == 0:
                index += 1
            if index < len(required_input):
                first_element = required_input[index][0]
        # At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
        if not isinstance(first_element, (int, list, tuple)):
            if is_tf_tensor(first_element):
                return_tensors = "tf" if return_tensors is None else return_tensors
            elif is_torch_tensor(first_element):
                return_tensors = "pt" if return_tensors is None else return_tensors
            elif isinstance(first_element, np.ndarray):
                return_tensors = "np" if return_tensors is None else return_tensors
            else:
                raise ValueError(
                    f"type of {first_element} unknown: {type(first_element)}. "
                    "Should be one of a python, numpy, pytorch or tensorflow object."
                )

            for key, value in encoded_inputs.items():
                encoded_inputs[key] = to_py_obj(value)

        # Convert padding_strategy in PaddingStrategy
        padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
            padding=padding, max_length=max_length, verbose=verbose
        )

        if max_entity_length is None:
            max_entity_length = self.max_entity_length

        required_input = encoded_inputs[self.model_input_names[0]]
        if required_input and not isinstance(required_input[0], (list, tuple)):
            encoded_inputs = self._pad(
                encoded_inputs,
                max_length=max_length,
                max_entity_length=max_entity_length,
                padding_strategy=padding_strategy,
                pad_to_multiple_of=pad_to_multiple_of,
                padding_side=padding_side,
                return_attention_mask=return_attention_mask,
            )
            return BatchEncoding(encoded_inputs, tensor_type=return_tensors)

        batch_size = len(required_input)
        if any(len(v) != batch_size for v in encoded_inputs.values()):
            raise ValueError("Some items in the output dictionary have a different batch size than others.")

        if padding_strategy == PaddingStrategy.LONGEST:
            max_length = max(len(inputs) for inputs in required_input)
            max_entity_length = (
                max(len(inputs) for inputs in encoded_inputs["entity_ids"]) if "entity_ids" in encoded_inputs else 0
            )
            padding_strategy = PaddingStrategy.MAX_LENGTH

        batch_outputs = {}
        for i in range(batch_size):
            inputs = {k: v[i] for k, v in encoded_inputs.items()}
            outputs = self._pad(
                inputs,
                max_length=max_length,
                max_entity_length=max_entity_length,
                padding_strategy=padding_strategy,
                pad_to_multiple_of=pad_to_multiple_of,
                padding_side=padding_side,
                return_attention_mask=return_attention_mask,
            )

            for key, value in outputs.items():
                if key not in batch_outputs:
                    batch_outputs[key] = []
                batch_outputs[key].append(value)

        return BatchEncoding(batch_outputs, tensor_type=return_tensors)

    ## Copied from LukeTokenizer with some lines added
    def _pad(
        self,
        encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
        max_length: Optional[int] = None,
        max_entity_length: Optional[int] = None,
        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
        pad_to_multiple_of: Optional[int] = None,
        padding_side: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
    ) -> dict:
        """
        Pad encoded inputs (on left/right and up to predefined length or max length in the batch)


        Args:
            encoded_inputs:
                Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
            max_length: maximum length of the returned list and optionally padding length (see below).
                Will truncate by taking into account the special tokens.
            max_entity_length: The maximum length of the entity sequence.
            padding_strategy: PaddingStrategy to use for padding.


                - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
                - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
                - PaddingStrategy.DO_NOT_PAD: Do not pad
                The tokenizer padding sides are defined in self.padding_side:


                    - 'left': pads on the left of the sequences
                    - 'right': pads on the right of the sequences
            pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
                This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
                `>= 7.5` (Volta).
            padding_side:
                The side on which the model should have padding applied. Should be selected between ['right', 'left'].
                Default value is picked from the class attribute of the same name.
            return_attention_mask:
                (optional) Set to False to avoid returning attention mask (default: set to model specifics)
        """
        entities_provided = bool("entity_ids" in encoded_inputs)

        # Load from model defaults
        if return_attention_mask is None:
            return_attention_mask = "attention_mask" in self.model_input_names

        if padding_strategy == PaddingStrategy.LONGEST:
            max_length = len(encoded_inputs["input_ids"])
            if entities_provided:
                max_entity_length = len(encoded_inputs["entity_ids"])

        if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
            max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of

        if (
            entities_provided
            and max_entity_length is not None
            and pad_to_multiple_of is not None
            and (max_entity_length % pad_to_multiple_of != 0)
        ):
            max_entity_length = ((max_entity_length // pad_to_multiple_of) + 1) * pad_to_multiple_of

        needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and (
            len(encoded_inputs["input_ids"]) != max_length
            or (entities_provided and len(encoded_inputs["entity_ids"]) != max_entity_length)
        )

        # Initialize attention mask if not present.
        if return_attention_mask and "attention_mask" not in encoded_inputs:
            encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"])
        if entities_provided and return_attention_mask and "entity_attention_mask" not in encoded_inputs:
            encoded_inputs["entity_attention_mask"] = [1] * len(encoded_inputs["entity_ids"])

        if needs_to_be_padded:
            difference = max_length - len(encoded_inputs["input_ids"])
            padding_side = padding_side if padding_side is not None else self.padding_side
            if entities_provided:
                entity_difference = max_entity_length - len(encoded_inputs["entity_ids"])
            if padding_side == "right":
                if return_attention_mask:
                    encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
                    if entities_provided:
                        encoded_inputs["entity_attention_mask"] = (
                            encoded_inputs["entity_attention_mask"] + [0] * entity_difference
                        )
                if "token_type_ids" in encoded_inputs:
                    encoded_inputs["token_type_ids"] = encoded_inputs["token_type_ids"] + [0] * difference
                    if entities_provided:
                        encoded_inputs["entity_token_type_ids"] = (
                            encoded_inputs["entity_token_type_ids"] + [0] * entity_difference
                        )
                if "special_tokens_mask" in encoded_inputs:
                    encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
                encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference
                encoded_inputs["position_ids"] = encoded_inputs["position_ids"] + [0] * difference  ## Added
                if entities_provided:
                    encoded_inputs["entity_ids"] = (
                        encoded_inputs["entity_ids"] + [self.entity_pad_token_id] * entity_difference
                    )
                    encoded_inputs["entity_position_ids"] = (
                        encoded_inputs["entity_position_ids"] + [[-1] * self.max_mention_length] * entity_difference
                    )
                    if self.task == "entity_span_classification":
                        encoded_inputs["entity_start_positions"] = (
                            encoded_inputs["entity_start_positions"] + [0] * entity_difference
                        )
                        encoded_inputs["entity_end_positions"] = (
                            encoded_inputs["entity_end_positions"] + [0] * entity_difference
                        )

            elif padding_side == "left":
                if return_attention_mask:
                    encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
                    if entities_provided:
                        encoded_inputs["entity_attention_mask"] = [0] * entity_difference + encoded_inputs[
                            "entity_attention_mask"
                        ]
                if "token_type_ids" in encoded_inputs:
                    encoded_inputs["token_type_ids"] = [0] * difference + encoded_inputs["token_type_ids"]
                    if entities_provided:
                        encoded_inputs["entity_token_type_ids"] = [0] * entity_difference + encoded_inputs[
                            "entity_token_type_ids"
                        ]
                if "special_tokens_mask" in encoded_inputs:
                    encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
                encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"]
                encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]  ## Added
                if entities_provided:
                    encoded_inputs["entity_ids"] = [self.entity_pad_token_id] * entity_difference + encoded_inputs[
                        "entity_ids"
                    ]
                    encoded_inputs["entity_position_ids"] = [
                        [-1] * self.max_mention_length
                    ] * entity_difference + encoded_inputs["entity_position_ids"]
                    if self.task == "entity_span_classification":
                        encoded_inputs["entity_start_positions"] = [0] * entity_difference + encoded_inputs[
                            "entity_start_positions"
                        ]
                        encoded_inputs["entity_end_positions"] = [0] * entity_difference + encoded_inputs[
                            "entity_end_positions"
                        ]
            else:
                raise ValueError("Invalid padding strategy:" + str(padding_side))

        return encoded_inputs

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        ## Start of block copied from BertJapaneseTokenizer.save_vocabulary
        if os.path.isdir(save_directory):
            if self.subword_tokenizer_type == "sentencepiece":
                vocab_file = os.path.join(
                    save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["spm_file"]
                )
            else:
                vocab_file = os.path.join(
                    save_directory,
                    (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"],
                )
        else:
            vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory

        if self.subword_tokenizer_type == "sentencepiece":
            with open(vocab_file, "wb") as writer:
                content_spiece_model = self.subword_tokenizer.sp_model.serialized_model_proto()
                writer.write(content_spiece_model)
        else:
            with open(vocab_file, "w", encoding="utf-8") as writer:
                index = 0
                for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
                    if index != token_index:
                        logger.warning(
                            f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
                            " Please check that the vocabulary is not corrupted!"
                        )
                        index = token_index
                    writer.write(token + "\n")
                    index += 1
        ## End of block copied from BertJapaneseTokenizer.save_vocabulary

        ## Start of block copied from LukeTokenizer.save_vocabulary
        entity_vocab_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["entity_vocab_file"]
        )

        with open(entity_vocab_file, "w", encoding="utf-8") as f:
            f.write(json.dumps(self.entity_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
        ## End of block copied from LukeTokenizer.save_vocabulary

        return vocab_file, entity_vocab_file