File size: 2,998 Bytes
6063721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
From 4394a62004260c3b9d781488e85f959a70910af1 Mon Sep 17 00:00:00 2001
Date: Sat, 8 Apr 2023 15:11:43 +1000
Subject: [PATCH] add DPMPP 2M V2
---
modules/sd_samplers_kdiffusion.py | 16 +++++++++-------
1 file changed, 9 insertions(+), 7 deletions(-)
diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py
index 93f0e55a..9202f4d4 100644
--- a/modules/sd_samplers_kdiffusion.py
+++ b/modules/sd_samplers_kdiffusion.py
@@ -27,12 +27,12 @@ samplers_k_diffusion = [
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}),
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
+ ('DPM++ 2M v2', 'sample_dpmpp_2m_v2', ['k_dpmpp_2m'], {}),
+ ('DPM++ 2M Karras v2', 'sample_dpmpp_2m_v2', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}),
]
--
---
k_diffusion/sampling.py | 36 ++++++++++++++++++++++++++++++++++++
1 file changed, 36 insertions(+)
diff --git a/repositories/k-diffusion/k_diffusion/sampling.py b/repositories/k-diffusion/k_diffusion/sampling.py
index f050f88..1b0b282 100644
--- a/repositories/k-diffusion/k_diffusion/sampling.py
+++ b/repositories/k-diffusion/k_diffusion/sampling.py
@@ -605,4 +605,39 @@ def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=No
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
old_denoised = denoised
return x
+
+
+@torch.no_grad()
+def sample_dpmpp_2m_v2(model, x, sigmas, extra_args=None, callback=None, disable=None):
+ """DPM-Solver++(2M)V2."""
+ extra_args = {} if extra_args is None else extra_args
+ s_in = x.new_ones([x.shape[0]])
+ sigma_fn = lambda t: t.neg().exp()
+ t_fn = lambda sigma: sigma.log().neg()
+ old_denoised = None
+
+ for i in trange(len(sigmas) - 1, disable=disable):
+ denoised = model(x, sigmas[i] * s_in, **extra_args)
+ if callback is not None:
+ callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
+ t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
+ h = t_next - t
+
+ t_min = min(sigma_fn(t_next), sigma_fn(t))
+ t_max = max(sigma_fn(t_next), sigma_fn(t))
+
+ if old_denoised is None or sigmas[i + 1] == 0:
+ x = (t_min / t_max) * x - (-h).expm1() * denoised
+ else:
+ h_last = t - t_fn(sigmas[i - 1])
+
+ h_min = min(h_last, h)
+ h_max = max(h_last, h)
+ r = h_max / h_min
+
+ h_d = (h_max + h_min) / 2
+ denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
+ x = (t_min / t_max) * x - (-h_d).expm1() * denoised_d
+
+ old_denoised = denoised
+ return x
--
2.34.1
|