File size: 1,486 Bytes
d1d2d2e d6cdf3a d1d2d2e 79a9c91 d1d2d2e 79a9c91 32cde59 d1d2d2e 32cde59 d1d2d2e 32cde59 d1d2d2e d6cdf3a 32cde59 d1d2d2e 32cde59 d1d2d2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
---
language: "en"
tags:
- counterfactual generation
widget:
- text: "It is great for kids. <|perturb|> [negation] It [BLANK] great for kids. [SEP]"
---
# Polyjuice
## Model description
This is a ported version of [Polyjuice](https://homes.cs.washington.edu/~wtshuang/static/papers/2021-arxiv-polyjuice.pdf), the general-purpose counterfactual generator.
For more code release, please refer to [this github page](https://github.com/tongshuangwu/polyjuice).
#### How to use
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
model_path = "uw-hai/polyjuice"
generator = pipeline("text-generation",
model=AutoModelForCausalLM.from_pretrained(model_path),
tokenizer=AutoTokenizer.from_pretrained(model_path),
framework="pt", device=0 if is_cuda else -1)
prompt_text = "A dog is embraced by the woman. <|perturb|> [negation] A dog is [BLANK] the woman."
generator(prompt_text, num_beams=3, num_return_sequences=3)
```
### BibTeX entry and citation info
```bibtex
@inproceedings{polyjuice:acl21,
title = "{P}olyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving Models",
author = "Tongshuang Wu and Marco Tulio Ribeiro and Jeffrey Heer and Daniel S. Weld",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics",
year = "2021",
publisher = "Association for Computational Linguistics"
``` |