wav2vec-300m-max18-WF-epoch-16-batch-8
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the IndabaxSenegal/asr-wolof-dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.9861
- Wer: 0.3930
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 16
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.2704 | 0.37 | 500 | 7.9492 | 1.0 |
3.19 | 0.75 | 1000 | 5.3047 | 1.0 |
2.7353 | 1.12 | 1500 | 2.1307 | 0.8724 |
2.058 | 1.49 | 2000 | 1.5998 | 0.6999 |
1.7582 | 1.87 | 2500 | 1.3994 | 0.6739 |
1.6432 | 2.24 | 3000 | 1.2822 | 0.5821 |
1.4893 | 2.61 | 3500 | 1.2704 | 0.5579 |
1.5018 | 2.99 | 4000 | 1.2324 | 0.5374 |
1.3868 | 3.36 | 4500 | 1.1459 | 0.5254 |
1.3156 | 3.73 | 5000 | 1.1376 | 0.5073 |
1.3179 | 4.11 | 5500 | 1.2034 | 0.5187 |
1.2562 | 4.48 | 6000 | 1.1535 | 0.4853 |
1.199 | 4.85 | 6500 | 1.0877 | 0.4797 |
1.1622 | 5.23 | 7000 | 1.1037 | 0.4693 |
1.1349 | 5.6 | 7500 | 1.1353 | 0.4625 |
1.1241 | 5.97 | 8000 | 1.0888 | 0.4491 |
1.0526 | 6.35 | 8500 | 1.0463 | 0.4508 |
1.0653 | 6.72 | 9000 | 1.2282 | 0.4432 |
1.0466 | 7.09 | 9500 | 1.1014 | 0.4330 |
1.009 | 7.47 | 10000 | 1.0511 | 0.4281 |
0.9773 | 7.84 | 10500 | 1.0790 | 0.4221 |
0.9662 | 8.22 | 11000 | 1.0327 | 0.4252 |
0.9973 | 8.59 | 11500 | 1.0801 | 0.4230 |
0.928 | 8.96 | 12000 | 1.0048 | 0.4179 |
0.8971 | 9.34 | 12500 | 1.0386 | 0.4153 |
0.919 | 9.71 | 13000 | 1.0200 | 0.4190 |
0.9131 | 10.08 | 13500 | 1.0283 | 0.4065 |
0.895 | 10.46 | 14000 | 1.0359 | 0.4042 |
0.8723 | 10.83 | 14500 | 0.9785 | 0.4096 |
0.8622 | 11.2 | 15000 | 1.0242 | 0.4044 |
0.8346 | 11.58 | 15500 | 1.0548 | 0.4083 |
0.8547 | 11.95 | 16000 | 0.9884 | 0.3990 |
0.8355 | 12.32 | 16500 | 1.0303 | 0.3959 |
0.846 | 12.7 | 17000 | 1.0079 | 0.3973 |
0.812 | 13.07 | 17500 | 1.0344 | 0.4027 |
0.8028 | 13.44 | 18000 | 0.9861 | 0.3930 |
0.8028 | 13.82 | 18500 | 1.0077 | 0.3954 |
0.7908 | 14.19 | 19000 | 0.9927 | 0.3949 |
0.7992 | 14.56 | 19500 | 0.9880 | 0.3957 |
0.7995 | 14.94 | 20000 | 0.9715 | 0.3931 |
0.8056 | 15.31 | 20500 | 0.9837 | 0.3966 |
0.7826 | 15.68 | 21000 | 0.9737 | 0.3973 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.4.0
- Datasets 2.15.0
- Tokenizers 0.15.2
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.