Limerobot's picture
Update README.md
3b060bc
|
raw
history blame
4.85 kB
---
datasets:
- sciq
- metaeval/ScienceQA_text_only
- GAIR/lima
- Open-Orca/OpenOrca
- openbookqa
language:
- en
tags:
- upstage
- llama
- instruct
- instruction
pipeline_tag: text-generation
---
# LLaMa-30b-instruct-2048 model card
## Model Details
* **Developed by**: [Upstage](https://en.upstage.ai)
* **Backbone Model**: [LLaMA](https://github.com/facebookresearch/llama/tree/llama_v1)
* **Variations**: It has different model parameter sizes and sequence lengths: [30B/1024](https://huggingface.co/upstage/llama-30b-instruct), [30B/2048](https://huggingface.co/upstage/llama-30b-instruct-2048), [65B/1024](https://huggingface.co/upstage/llama-65b-instruct)
* **Language(s)**: English
* **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
* **License**: This model is under a **Non-commercial** Bespoke License and governed by the Meta license. You should only use this repository if you have been granted access to the model by filling out [this form](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform), but have either lost your copy of the weights or encountered issues converting them to the Transformers format
* **Where to send comments**: Instructions on how to provide feedback or comments on a model can be found by opening an issue in the [Hugging Face community's model repository](https://huggingface.co/upstage/llama-30b-instruct-2048/discussions)
* **Contact**: For questions and comments about the model, please email `contact@upstage.ai`
## Dataset Details
### Used Datasets
- [openbookqa](https://huggingface.co/datasets/openbookqa)
- [sciq](https://huggingface.co/datasets/sciq)
- [Open-Orca/OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca)
- [metaeval/ScienceQA_text_only](https://huggingface.co/datasets/metaeval/ScienceQA_text_only)
- [GAIR/lima](https://huggingface.co/datasets/GAIR/lima)
> No other data was used except for the dataset mentioned above
### Prompt Template
```
### System:
{System}
### User:
{User}
### Assistant:
{Assistant}
```
## Hardware and Software
* **Hardware**: We utilized an A100x8 for training our model
* **Training Factors**: We fine-tuned this model using a combination of the [DeepSpeed library](https://github.com/microsoft/DeepSpeed) and the [HuggingFace trainer](https://huggingface.co/docs/transformers/main_classes/trainer)
## Evaluation Results
### Overview
- We conducted a performance evaluation based on the tasks being evaluated on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
We evaluated our model on four benchmark datasets, which include `ARC-Challenge`, `HellaSwag`, `MMLU`, and `TruthfulQA`.
We used the [lm-evaluation-harness repository](https://github.com/EleutherAI/lm-evaluation-harness), specifically commit [b281b0921b636bc36ad05c0b0b0763bd6dd43463](https://github.com/EleutherAI/lm-evaluation-harness/tree/b281b0921b636bc36ad05c0b0b0763bd6dd43463).
### Main Results
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA |
|-----------------------------------------------|---------|-------|-----------|-------|------------|
| Llama-2-70b-instruct-1024 (Ours, Local Reproduction) | 72.0 | 70.7 | 87.4 | 69.3 | 60.7 |
| llama-65b-instruct (Ours, Local Reproduction) | 69.4 | 67.6 | 86.5 | 64.9 | 58.8 |
| **llama-30b-instruct-2048** (***Ours***, ***Open LLM Leaderboard***) | **67.0** | **64.9** | **84.9** | **61.9** | **56.3** |
| Llama-2-70b-chat-hf | 66.8 | 64.6 | 85.9 | 63.9 | 52.8 |
| llama-30b-instruct (Ours, Open LLM Leaderboard) | 65.2 | 62.5 | 86.2 | 59.4 | 52.8 |
| falcon-40b-instruct | 63.4 | 61.6 | 84.3 | 55.4 | 52.5 |
| llama-65b | 62.1 | 57.6 | 84.3 | 63.4 | 43.0 |
### Scripts
- Prepare evaluation environments:
```
# clone the repository
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
# check out the specific commit
git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
# change to the repository directory
cd lm-evaluation-harness
```
## Ethical Issues
### Ethical Considerations
- There were no ethical issues involved, as we did not include the benchmark test set or the training set in the model's training process.
## Contact Us
### Why Upstage LLM?
- [Upstage](https://en.upstage.ai)'s LLM research has yielded remarkable results. Our 30B model **outperforms all models around the world**, positioning itself as the leading performer. Recognizing the immense potential in implementing private LLM to actual businesses, we invite you to easily apply private LLM and fine-tune it with your own data. For a seamless and tailored solution, please do not hesitate to reach out to us. ► [click here to contact](https://www.upstage.ai/private-llm?utm_source=huggingface&utm_medium=link&utm_campaign=privatellm).