LongCap: Finetuned BLIP for generating long captions of images, suitable for prompts for text-to-image generation and captioning text-to-image datasets
Usage
You can use this model for conditional and un-conditional image captioning
Using the Pytorch model
Running the model on CPU
Click to expand
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
processor = BlipProcessor.from_pretrained("unography/blip-large-long-cap")
model = BlipForConditionalGeneration.from_pretrained("unography/blip-large-long-cap")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
inputs = processor(raw_image, return_tensors="pt")
pixel_values = inputs.pixel_values
out = model.generate(pixel_values=pixel_values, max_length=250)
print(processor.decode(out[0], skip_special_tokens=True))
>>> a woman sitting on the beach, wearing a checkered shirt and a dog collar. the woman is interacting with the dog, which is positioned towards the left side of the image. the setting is a beachfront with a calm sea and a golden hue.
Running the model on GPU
In full precision
Click to expand
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
processor = BlipProcessor.from_pretrained("unography/blip-large-long-cap")
model = BlipForConditionalGeneration.from_pretrained("unography/blip-large-long-cap").to("cuda")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
inputs = processor(raw_image, return_tensors="pt").to("cuda")
pixel_values = inputs.pixel_values
out = model.generate(pixel_values=pixel_values, max_length=250)
print(processor.decode(out[0], skip_special_tokens=True))
>>> a woman sitting on the beach, wearing a checkered shirt and a dog collar. the woman is interacting with the dog, which is positioned towards the left side of the image. the setting is a beachfront with a calm sea and a golden hue.
In half precision (float16
)
Click to expand
import torch
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
processor = BlipProcessor.from_pretrained("unography/blip-large-long-cap")
model = BlipForConditionalGeneration.from_pretrained("unography/blip-large-long-cap", torch_dtype=torch.float16).to("cuda")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
pixel_values = inputs.pixel_values
out = model.generate(pixel_values=pixel_values, max_length=250)
print(processor.decode(out[0], skip_special_tokens=True))
>>> a woman sitting on the beach, wearing a checkered shirt and a dog collar. the woman is interacting with the dog, which is positioned towards the left side of the image. the setting is a beachfront with a calm sea and a golden hue.
- Downloads last month
- 23
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.