File size: 9,853 Bytes
ae98a8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import mesh_tensorflow.optimize
import mesh_tensorflow.transformer.dataset
import mesh_tensorflow.transformer.learning_rate_schedules
import mesh_tensorflow.transformer.t2t_vocabulary
import mesh_tensorflow.transformer.transformer_layers
import mesh_tensorflow.transformer.utils
import t5.data.sentencepiece_vocabulary
import t5.models.mesh_transformer

# Macros:
# ==============================================================================
d_ff = 2048
d_kv = 64
d_model = 512
dropout_rate = 0.1
num_heads = 8
num_layers = 6

# Parameters for AdafactorOptimizer:
# ==============================================================================
AdafactorOptimizer.beta1 = 0.0
AdafactorOptimizer.clipping_threshold = 1.0
AdafactorOptimizer.decay_rate = None
AdafactorOptimizer.epsilon1 = 1e-30
AdafactorOptimizer.epsilon2 = 0.001
AdafactorOptimizer.factored = True
AdafactorOptimizer.min_dim_size_to_factor = 128
AdafactorOptimizer.multiply_by_parameter_scale = True

# Parameters for Bitransformer:
# ==============================================================================
Bitransformer.shared_embedding = True

# Parameters for denoise:
# ==============================================================================
# None.

# Parameters for decoder/DenseReluDense:
# ==============================================================================
decoder/DenseReluDense.activation = 'relu'
decoder/DenseReluDense.dropout_rate = %dropout_rate
decoder/DenseReluDense.hidden_size = %d_ff

# Parameters for encoder/DenseReluDense:
# ==============================================================================
encoder/DenseReluDense.activation = 'relu'
encoder/DenseReluDense.dropout_rate = %dropout_rate
encoder/DenseReluDense.hidden_size = %d_ff

# Parameters for decoder/EncDecAttention:
# ==============================================================================
# None.

# Parameters for get_variable_dtype:
# ==============================================================================
get_variable_dtype.activation_dtype = 'bfloat16'

# Parameters for get_vocab_embedding_cls:
# ==============================================================================
# None.

# Parameters for get_vocabulary:
# ==============================================================================
# None.

# Parameters for iid_noise_mask:
# ==============================================================================
# None.

# Parameters for decoder/LayerStack:
# ==============================================================================
decoder/LayerStack.dropout_rate = %dropout_rate
decoder/LayerStack.norm_epsilon = 1e-06
decoder/LayerStack.recompute_grads = False

# Parameters for encoder/LayerStack:
# ==============================================================================
encoder/LayerStack.dropout_rate = %dropout_rate
encoder/LayerStack.norm_epsilon = 1e-06
encoder/LayerStack.recompute_grads = False

# Parameters for make_bitransformer:
# ==============================================================================
make_bitransformer.decoder_name = 'decoder'
make_bitransformer.encoder_name = 'encoder'

# Parameters for decoder/make_layer_stack:
# ==============================================================================
decoder/make_layer_stack.block_scope = True
decoder/make_layer_stack.layers = \
    [@mesh_tensorflow.transformer.transformer_layers.SelfAttention,
     @mesh_tensorflow.transformer.transformer_layers.EncDecAttention,
     @mesh_tensorflow.transformer.transformer_layers.DenseReluDense]
decoder/make_layer_stack.num_layers = %num_layers

# Parameters for encoder/make_layer_stack:
# ==============================================================================
encoder/make_layer_stack.block_scope = True
encoder/make_layer_stack.layers = \
    [@mesh_tensorflow.transformer.transformer_layers.SelfAttention,
     @mesh_tensorflow.transformer.transformer_layers.DenseReluDense]
encoder/make_layer_stack.num_layers = %num_layers

# Parameters for maybe_print_dataset:
# ==============================================================================
maybe_print_dataset.should_print = False

# Parameters for mesh_train_dataset_fn:
# ==============================================================================
mesh_train_dataset_fn.use_cached = False

# Parameters for MtfModel:
# ==============================================================================
MtfModel.autostack = True
MtfModel.ensemble_inputs = None
MtfModel.gcp_project = None
MtfModel.layout_rules = \
    'ensemble:ensemble,batch:batch,d_ff:model,heads:model,vocab:model,experts:batch'
MtfModel.mesh_devices = None
MtfModel.mesh_shape = None
MtfModel.model_type = 'bitransformer'
MtfModel.optimizer = None
MtfModel.predict_fn = None
MtfModel.tpu_job_name = None
MtfModel.tpu_zone = None
MtfModel.variable_filter = None

# Parameters for noise_token_to_sentinel:
# ==============================================================================
# None.

# Parameters for num_parallel_calls:
# ==============================================================================
num_parallel_calls.deterministic = False

# Parameters for pack_dataset:
# ==============================================================================
pack_dataset.use_custom_ops = False

# Parameters for pack_or_pad:
# ==============================================================================
# None.

# Parameters for decoder/SelfAttention:
# ==============================================================================
decoder/SelfAttention.attention_func = None
decoder/SelfAttention.attention_kwargs = None
decoder/SelfAttention.combine_dims = True
decoder/SelfAttention.dropout_rate = %dropout_rate
decoder/SelfAttention.keep_query_heads_dims = False
decoder/SelfAttention.key_value_size = %d_kv
decoder/SelfAttention.num_heads = %num_heads
decoder/SelfAttention.num_memory_heads = 0
decoder/SelfAttention.relative_attention_num_buckets = 32
decoder/SelfAttention.relative_attention_type = 'bias_shared'
decoder/SelfAttention.shared_kv = False

# Parameters for encoder/SelfAttention:
# ==============================================================================
encoder/SelfAttention.attention_func = None
encoder/SelfAttention.attention_kwargs = None
encoder/SelfAttention.combine_dims = True
encoder/SelfAttention.dropout_rate = %dropout_rate
encoder/SelfAttention.keep_query_heads_dims = False
encoder/SelfAttention.key_value_size = %d_kv
encoder/SelfAttention.num_heads = %num_heads
encoder/SelfAttention.num_memory_heads = 0
encoder/SelfAttention.relative_attention_num_buckets = 32
encoder/SelfAttention.relative_attention_type = 'bias_shared'
encoder/SelfAttention.shared_kv = False

# Parameters for SentencePieceVocabulary:
# ==============================================================================
# None.

# Parameters for sentinel_id:
# ==============================================================================
sentinel_id.return_value = None

# Parameters for serialize_num_microbatches:
# ==============================================================================
serialize_num_microbatches.tokens_per_microbatch_per_replica = 8192

# Parameters for shift_targets:
# ==============================================================================
shift_targets.bos_id = 0
shift_targets.eos_id = 1

# Parameters for tpu_estimator_model_fn:
# ==============================================================================
tpu_estimator_model_fn.model_info_file = None
tpu_estimator_model_fn.outer_batch_size = 1
tpu_estimator_model_fn.tpu_summaries = False

# Parameters for tpu_mesh_shape:
# ==============================================================================
tpu_mesh_shape.ensemble_parallelism = None

# Parameters for decoder/Unitransformer:
# ==============================================================================
decoder/Unitransformer.d_model = %d_model
decoder/Unitransformer.ensemble = None
decoder/Unitransformer.input_full_attention = False
decoder/Unitransformer.label_smoothing = 0.0
decoder/Unitransformer.loss_denominator = 233472
decoder/Unitransformer.loss_fn = None
decoder/Unitransformer.loss_on_targets_only = False
decoder/Unitransformer.max_length = 512
decoder/Unitransformer.positional_embedding = False
decoder/Unitransformer.shared_embedding_and_softmax_weights = True
decoder/Unitransformer.sinusoid_positional_embedding = False
decoder/Unitransformer.token_dropout_rate = 0.0
decoder/Unitransformer.vocab_divisor = 128
decoder/Unitransformer.z_loss = 0.0001

# Parameters for encoder/Unitransformer:
# ==============================================================================
encoder/Unitransformer.d_model = %d_model
encoder/Unitransformer.ensemble = None
encoder/Unitransformer.input_full_attention = False
encoder/Unitransformer.label_smoothing = 0.0
encoder/Unitransformer.loss_denominator = None
encoder/Unitransformer.loss_fn = None
encoder/Unitransformer.loss_on_targets_only = False
encoder/Unitransformer.max_length = 512
encoder/Unitransformer.positional_embedding = False
encoder/Unitransformer.shared_embedding_and_softmax_weights = True
encoder/Unitransformer.sinusoid_positional_embedding = False
encoder/Unitransformer.token_dropout_rate = 0.0
encoder/Unitransformer.vocab_divisor = 128
encoder/Unitransformer.z_loss = 0.0001

# Parameters for VarianceScalingInitializer:
# ==============================================================================
VarianceScalingInitializer.distribution = 'normal'
VarianceScalingInitializer.mode = 'fan_in'
VarianceScalingInitializer.scale = 1.0

# Parameters for VocabEmbedding:
# ==============================================================================
# None.

# Parameters for Vocabulary:
# ==============================================================================
# None.