|
--- |
|
license: apache-2.0 |
|
base_model: ntu-spml/distilhubert |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- audiofolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: distilhubert-finetuned-accents |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: audiofolder |
|
type: audiofolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.2708333333333333 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilhubert-finetuned-accents |
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9466 |
|
- Accuracy: 0.2708 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.8 |
|
- num_epochs: 12 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.48 | 1.0 | 48 | 2.4777 | 0.1042 | |
|
| 2.473 | 2.0 | 96 | 2.4604 | 0.1562 | |
|
| 2.4772 | 3.0 | 144 | 2.4282 | 0.1042 | |
|
| 2.3678 | 4.0 | 192 | 2.4007 | 0.1042 | |
|
| 2.324 | 5.0 | 240 | 2.3261 | 0.2083 | |
|
| 2.2489 | 6.0 | 288 | 2.2360 | 0.1771 | |
|
| 1.9909 | 7.0 | 336 | 2.1544 | 0.1875 | |
|
| 1.9903 | 8.0 | 384 | 2.0937 | 0.1875 | |
|
| 2.0668 | 9.0 | 432 | 2.0222 | 0.2083 | |
|
| 1.8473 | 10.0 | 480 | 2.0298 | 0.1875 | |
|
| 1.8068 | 11.0 | 528 | 1.9965 | 0.25 | |
|
| 1.699 | 12.0 | 576 | 1.9466 | 0.2708 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|