File size: 1,588 Bytes
8581f1b 97762e9 8581f1b a95b721 8581f1b 97762e9 8581f1b 441b454 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
language:
- en
- tr
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
base_model: unsloth/llama-3-8b-bnb-4bit
datasets:
- umarigan/GPTeacher-General-Instruct-tr
---
# Uploaded model
- **Developed by:** umarigan
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
## Usage Examples
```python
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("umarigan/LLama-3-8B-Instruction-tr")
model = AutoModelForCausalLM.from_pretrained("umarigan/LLama-3-8B-Instruction-tr")
alpaca_prompt = """
Görev:
{}
Girdi:
{}
Cevap:
{}"""
inputs = tokenizer(
[
alpaca_prompt.format(
"bir haftada 3 kilo verebileceğim 5 öneri sunabilir misin?", # Görev
"", # Girdi
"", # Cevap - boş bırakın!
)
], return_tensors = "pt")
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)
Output:
<|begin_of_text|> Görev: bir haftada 3 kilo verebileceğim 5 öneri sunabilir misin?
Girdi:
Cevap:
1. Yemeklerinizde daha az tuz kullanın. 2. Daha fazla sebze ve meyve tüketin. 3. Daha fazla su için. 4. Daha fazla egzersiz yapın. 5. Daha fazla uyku alın.<|end_of_text|>
``` |